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Chapter 1

Introduction

Many complex systems can be modeled as a network, which is simply a collection
of objects and the relations between them. The objects are typically referred to as
vertices and the connections between them are called edges. Networks have become
a useful and flexible representation for a wide variety of systems in different areas,
such as social, biological, technological, and communication sciences. For example,
social networks consist of people that are connected by friendship or acquaintance,
and the world wide web is a network where many webpages are connected by hyper-
links. Furthermore, with advances in computational power it has become increas-
ingly possible to work with huge data sets, and this has subsequently made it feasible
to analyze extremely large networks. For instance, the internet, the world wide web,
the brain, and many social networks consist of well over a billion vertices each. The
need to deal with such a large number of objects is partly what makes the study of
networks so interesting.

Networks representing real systems are usually not regular and have many in-
homogeneities, with various parts of the network having radically different structure.
These structures often contain important information about the network and the re-
lation between its various components. For instance, many networks contain a few
important vertices, often referred to as hubs, that have many more connections than
a typical vertex. Another example is a network that consists of several communit-
ies. These are densely connected groups of vertices, with significantly more internal
connections between vertices in the same community than external connections that
connect a vertex inside the community to a vertex outside of it. Communities often
arise because vertices in the same community have something in common. For ex-
ample, communities could be groups of friends or family in a social network, or in
the world wide web it could be a collection of webpages dealing with the same topic.
Even more generally, a network could contain one or more components or anomalies
that exhibit a different local structure or that contain another connectivity pattern.

1



2 1. Introduction

Identifying such structures in a network can provide valuable new insights about
the network and the objects within. Therefore, we would like to know when this is
possible. We formalize this using random graphs. These are network models that are
commonly used as a baselinewhen studying real-world networks. Suchmodelsmake
it possible to perform statistical analyses and test whether there is an actual structure
present or whether, instead, our observations can also be attributed to random noise
present in the baseline model.

In this thesis, we study the detection of structures in networks for several differ-
ent random graphmodels and we identify when it is possible to discern communities
or anomalies from the natural variability present in these models. Furthermore, we
also study random graphs directly, yielding novel insights about their structure.

In this introductory chapter we present the main subjects used throughout this
thesis. We start by defining some well-known random graph models and related
properties. We then introduce the statistical framework that is commonly used to
perform hypothesis testing and explain how this can be applied to network problems.
This chapter is concluded with a brief summary of contributions and an outline of
this thesis.

1.1 Random graphs

Networks are often represented by a graph, which is simply an ordered pair 𝐺 =
(𝑉, 𝐸) consisting of a set of vertices 𝑉 representing the objects, and a set of edges
𝐸 ⊆ {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉} defining relationships between pairs of objects or vertices.
Sometimes these relations can also have a direction associated with them, in which
case the resulting graphs are called directed graphs. However, throughout this thesis
we only consider undirected graphs, where edges do not have a direction. In other
words, in this thesis edges always indicate a bidirectional relationship. The size of a
graph is the number of vertices, which we always denote by |𝑉| = 𝑛. Furthermore,
a complete graph is a graph where all possible edges are present. On the other hand,
an empty graph is a graph without any edges. The degree of a vertex is the number of
edges incident with it. In particular, in a complete graph with 𝑛 vertices every vertex
has degree 𝑛 − 1.

In many cases, one only observes a single instance of a network. To still be able
to analyze these networks, one often turns to random graphs, which are models that
specify a probability distribution over all possible graphs. Thismakes it possible to see
how likely certain properties are to arise, and to test whether the observed graph is,
in some sense, special. In this way, random graphs are commonly used as a baseline
or null model, making statistical analyses of networks possible. In the models we
consider the vertices will often be labeled 𝑉 = [𝑛] = {1, … , 𝑛} and only the relations
between them are random, with each random graphmodel specifying different prob-
abilities and sometimes dependence among the potential edges.



1.1. Random graphs 3

Below we discuss several common random graph models and explain how they
are related. Each of these models is different in order to capture other characteristics
observed in real-world networks. This results inmodels with different properties and
varying amount of complexity.

1.1.1 Erdős-Rényi random graph

Probably the most studied and also the simplest random graph model is the Erdős-
Rényi random graph [70, 90]. This model is denoted by 𝔾(𝑛, 𝑝) and has two para-
meters: the graph size 𝑛 ∈ ℕ and an edge probability 𝑝 ∈ [0, 1]. A graph sampled
from this model has |𝑉| = 𝑛 vertices, where each pair of vertices 𝑖, 𝑗 ∈ 𝑉 is connected
independently with probability 𝑝.

Because all edges are added with the same probability, this model is sometimes
called homogeneous in the sense that the vertex degrees tend to take values in a nar-
row range. Note that the degree of every vertex is approximately (𝑛 − 1)𝑝 with only
little variability. Furthermore, because every pair of vertices is connected independ-
ently there is no correlation between edges, and this causes every part of the graph
to “look” similar, and with little structure.

The edge probability 𝑝 = 𝑝𝑛 is frequently also allowed to depend on the graph
size 𝑛. When taking 𝑝 = 𝑐/𝑛, for some constant 𝑐 > 0, this leads to what is called the
sparse regime where the average degree converges to a constant as the graph size 𝑛
tends to∞. This is in contrast to the case where 𝑝 is fixed, in which case one obtains
a so-called dense graph where the average degree grows linearly with the graph size.
Choices of 𝑝 in between these regimes give rise to graphs of intermediate density.

1.1.2 Inhomogeneous random graph

Anatural way to extend the Erdős-Rényimodel is to allow formore inhomogeneity of
the vertex degrees as is often observed in real-world networks. An obvious approach
that provides this inhomogeneity is to allow 𝑝 = 𝑝𝑖𝑗 to vary for every pair of vertices
𝑖, 𝑗 ∈ 𝑉. However, this model is often too general and more restrictions are needed
to obtain meaningful results. To this end, we consider the so-called inhomogeneous
random graphs. This model will be denoted by 𝔾(𝑛; 𝜅, ℓ𝑛), where 𝑛 ∈ 𝑁 is the graph
size, 𝜅(⋅, ⋅) is a symmetric measurable function called the kernel that controls the
inhomogeneity, and ℓ𝑛 is a scaling parameter controlling the edge density. To gener-
ate a graph from this model, every vertex 𝑖 ∈ 𝑉 is first assigned a weight 𝑤𝑖. Often,
these weights are assumed to be in [0, 1]. Then, every pair of vertices is connected
independently with probability

𝑝𝑖𝑗 = min (
𝜅(𝑤𝑖, 𝑤𝑗)

ℓ𝑛
, 1) . (1.1)
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Sometimes the weights 𝑤𝑖 are assumed to be random variables instead. In this case,
one first samples the weight of every vertex, and then conditionally on these weights
the edges are sampled conditionally independently according to (1.1).

When ℓ𝑛 is constant the resulting graphs are dense, with an average degree that
grows linearly with the graph size. This leads to the theory of graphons introduced
by Lovász and Szegedy [120]. For a detailed description of this theory we refer the
reader to Lovász [119]. On the other hand, if ℓ𝑛 = 𝑛 and the kernel is integrable then
we are in the so-called sparse case where the resulting graph has bounded average
degree. This case was first studied in detail by Bollobás, Janson, and Riordan [31].

A special case of this model is the so-called rank-1 inhomogeneous random graph
where 𝜅(𝑤𝑖, 𝑤𝑗) = 𝑤𝑖𝑤𝑗. Manywell-known randomgraphs fit in this framework, such
as theErdős-Rényimodelwhen each vertex has the sameweight. Furthermore, when
ℓ𝑛 = 𝑛 one obtains the Chung-Lumodel [53, 54, 55], or closely related variations such
as the Norros-Reittu and generalized random graph by replacing the minimum by a
softminimum instead [43, 146]. Thesemodels have receivedmuch attention over the
past decade as they accurately capture some of the inhomogeneity observed in many
real-world networks while remaining mathematically tractable.

Another variation of this model is the stochastic block model [106], also called
planted partition model in computer science. The stochastic block model is obtained
from the general inhomogeneous random graph model when 𝜅(⋅, ⋅) can only take on
finitely many values. In this case, vertices can be seen as being assigned one of 𝑘 ≤ 𝑛
groups. Then, the probability of connecting two vertices depends solely on the groups
these vertices belong to. Typically, vertices belonging to the same group will have a
large probability of connecting, whereas vertices fromdifferent groups have a smaller
connection probability. In this way, the stochastic block model can generate graphs
with a prescribed community structure, with edges being more prevalent between
members of the same group.

1.1.3 Random geometric graph

Many real-world networks have, or are believed to have, an underlying spatial struc-
ture. This can be the physical locations of the vertices but it can also bemore abstract
and encode some other form of similarity between the vertices. For instance, friend-
ships are more likely between individuals with similar interests. So, we can imagine
that each vertex is endowed with some set of attributes, and edges are more likely to
exist between vertices with similar attributes.

To model such networks with spatial structure the geometric random graph
was introduced by Gilbert [91], and later studied in detail by Penrose [151]. This
model assigns every vertex 𝑖 ∈ 𝑉 to a location 𝑥𝑖 in some metric space, typically a
𝑑-dimensional cube or sphere. Note that, these locations are latent quantities and
are usually not observed. We connect every pair of vertices 𝑖, 𝑗 ∈ 𝑉 if their Euclidean
distance 𝑑(𝑥𝑖, 𝑥𝑗) is less than some threshold radius parameter 𝑟. Similarly to the
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previous models, we frequently let 𝑟 = 𝑟𝑛 decrease with the graph size. In this way,
the connection radius can be used as a tuning parameter controlling the sparsity of
the resulting graphs.

In thismodel, when two vertices are connected they need to be quite close to each
other. Therefore, it is muchmore likely that two vertices that share a common neigh-
bor are themselves connected. This type of dependence is commonly referred to as
clustering and can be observed inmany real-world networks. Because of this, the ran-
dom geometric graph has much more structure than, for example, the Erdős-Rényi
random graph. However, in many aspects these models are still similar. In particu-
lar, the degree of vertices from a geometric random graph still tend to take values in
a relatively narrow range, making the resulting graphs rather homogeneous. It turns
out that it is the Euclidean geometry that causes the graphs to become homogeneous
and a different geometry can result in more inhomogeneity. In particular, the hy-
perbolic random graph can be highly inhomogeneous and have a power-law degree
distribution while retaining the clustering property [29, 94, 117, 156].

1.1.4 Preferential attachment model

The final model we introduce is somewhat different from the previous ones. Until
now, we have discussed static models where the vertex set is fixed. However, in the
preferential attachment model the graph is dynamically grown by adding one new
vertex at a time, and connecting it to the existing network using simple local con-
nection rules [16, 68]. The main success of this model comes from the recognition
that these local connection rules are able to explain important macroscopic features
observed in real-world networks. For example, many real-world networks are scale-
free which roughly means that they have a power-law degree sequence, and they are
small-worlds which means that the typical distance between vertices in these net-
works is quite small. Both these properties are often observed in real-world networks.
For example, the internet [71], the world wide web [4, 44], or scientific collaboration
networks [15, 141].

There exist various versions of the preferential attachment model, each follow-
ing a slightly different convention for adding new vertices. Here we consider the
following model. Given two parameters 𝑚 ≥ 1 and 𝛿 ≥ −𝑚, this model generates a
sequence of graphs (𝐺𝑡)𝑛𝑡=1, from which we consider only the final snapshot 𝐺𝑛. The
first graph 𝐺1 consists of two vertices 𝑣0 and 𝑣1 connected by𝑚 edges. For 2 ≤ 𝑡 ≤ 𝑛,
the graph 𝐺𝑡 is constructed from 𝐺𝑡−1 by adding a vertex 𝑣𝑡. This vertex has𝑚 edges,
and these are added one by one and with intermediate updating of degrees. To this
end, define 𝐺𝑡,0 as the graph 𝐺𝑡−1 together with the vertex 𝑣𝑡 without any edges, and
let 𝐺𝑡,1, 𝐺𝑡,2, … , 𝐺𝑡,𝑚 be the intermediate graphs for each of the 𝑚 edges emanating
from 𝑣𝑡. For 1 ≤ 𝑖 ≤ 𝑚, the graph 𝐺𝑡,𝑖 is constructed from 𝐺𝑡,𝑖−1 by connecting 𝑣𝑡 to a
randomly selected vertex 𝑣𝑠 ∈ {𝑣0, … , 𝑣𝑡−1}. This is where the parameter 𝛿 comes in,
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because the probability that the 𝑖th edge of 𝑣𝑡 connects to 𝑣𝑠 is given by

ℙ(𝑣𝑡,𝑖 ↔ 𝑣𝑠 | 𝐺𝑡,𝑖−1) =
deg𝑣𝑠(𝐺𝑡,𝑖−1) + 𝛿

∑𝑡−1
𝑗=0(deg𝑣𝑗(𝐺𝑡,𝑖−1) + 𝛿)

, (1.2)

where deg𝑣𝑠(𝐺𝑡,𝑖−1) denotes the degree of 𝑣𝑠 in 𝐺𝑡,𝑖−1. After all 𝑚 edges have been
added to the vertex 𝑣𝑡 we obtain the graph 𝐺𝑡 = 𝐺𝑡,𝑚.

As can be seen, the newly appearing vertex is more likely to connect to vertices
that already have large degrees, thusmaking these degrees even larger. This behavior
is called preferential attachment and generates highly inhomogeneous graphs with a
power-law degree distribution [16, 33, 104]. This property can also be obtained in, for
example, inhomogeneous random graphs by choosing the appropriate model para-
meters. However, the preferential attachmentmodel has the appealing characteristic
that this follows from a simple local connection rule.

1.2 Cliques and dense subgraphs

An important concept in the study of graphs is that of a clique, which is also called a
complete subgraph. This is a subset of vertices 𝐶 ⊆ 𝑉 such that every pair of vertices
𝑖, 𝑗 ∈ 𝐶 is connected. Another way to define a clique is via the notion of induced
subgraph. Given a graph 𝐺 = (𝑉, 𝐸), an induced subgraph is another graph, formed
from a subset of the vertices 𝐶 ⊆ 𝑉 and all of the edges connecting them, that is
{(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝐶} ∩ 𝐸. Thus, 𝐶 is a clique when the subgraph induced by 𝐶 is a
complete graph.

Cliques arise naturally in the context of sociology, where they are commonly
used to model communities of people that are all mutually acquainted [6, 121, 122,
133]. For example, these can arise as a model for groups of friends in a social net-
work. However, this definition is sometimes too strict for real-world applications
and one would like to consider a more general class of dense subgraphs that allows
for a couple of missing edges. This motivated research into relaxations of the notion
of a clique. One of the most popular of these relaxations is the quasi-clique [2, 3].
Given 𝛾 ∈ [0, 1], a subset of vertices 𝐶 is called a quasi-clique if it contains at least a
fraction 𝛾 of all possible edges. That is, 𝐶 is a quasi-clique if the subgraph induced by
𝐶 contains at least 𝛾(|𝐶|2 ) edges. Note that, for 𝛾 = 1, the definition of a quasi-clique
coincides with the definition a clique. While cliques are a good model for tight-knit
communities, such as groups of friends, the definition of a quasi-clique is more loose
and might be better suited as a model for a group of acquaintances.

One is often interested in the largest communities within a given network, or
more precisely, one would like to know the size of the largest clique or quasi-clique
in a given graph. However, these are well-known to be computationally hard prob-
lems in general [101, 115, 149]. Therefore, one usually resorts to studying the size of
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the largest clique or quasi-clique in a typical or random graph, using the theory of
random graphs. To this end, we define the clique number 𝜔(𝐺) as the largest clique
in a graph 𝐺. Similarly, the size of the largest 𝛾-quasi-clique in the graph 𝐺 is called
the 𝛾-quasi-clique number and is denoted by 𝜔𝛾(𝐺). It is then common to study the
behavior of 𝜔(𝐺) or 𝜔𝛾(𝐺) when the graph 𝐺 is sampled from one of the random
graph models described earlier. It turns out that the clique number 𝜔(𝐺), as well as
the quasi-clique number 𝜔𝛾(𝐺), are very well concentrated in many of the popular
random graph models: Erdős-Rényi random graph [13, 93, 125, 126], inhomogen-
eous random graph [26, 27, 66], and random geometric graph [137]. This suggests
a more general underlying principle that could be interesting to investigate further.
See Chapter 7 for a discussion of this issue.

1.3 Hypothesis testing

In this section we introduce the principal subject of this thesis, the problem of hypo-
thesis testing on graphs. As is often the case in statistical inference, one starts with
a set of observations. These are the values taken on by some random variable (or in
our case random graph) whose distribution ℙ𝜃 is not known, except that we assume
that the unknown parameter 𝜃 lies inside a parameter space Ω. Our goal is then to
use these observations to infer some additional information about the distribution
ℙ𝜃. In particular, we will focus on hypothesis testing. Here we consider two mutu-
ally exclusive classes, called the null hypothesis 𝐻0 and alternative hypothesis 𝐻1,
and their corresponding disjoint subsets of the parameter spaceΩ𝐻0 andΩ𝐻1, so that
Ω𝐻0 ∪ Ω𝐻1 = Ω and Ω𝐻0 ∩ Ω𝐻1 = ∅. Mathematically, our goal is then to use the ob-
servations to decide which of these hypotheses is true, or at least more likely. More
specifically, we want to decide whether the unknown parameter 𝜃 belongs to Ω𝐻0
or Ω𝐻1. Below we introduce the formal framework that is used to make hypothesis
testing mathematically rigorous.

1.3.1 Testing problems on graphs

Our primary focuswill be on combinatorial testing problems involving graphs, mean-
ing that we assume that the graph itself is the quantity we observe. In this case, the
null hypothesis𝐻0 is typically assumed to be a random graphmodel, for example one
of the models described in Section 1.1. The alternative hypothesis𝐻1 is often largely
similar to the null model, with only small parts of the graph being different. Think
of a graph possibly containing one or more anomalies, then the null hypothesis and
the alternative hypothesis will be largely the same except on small parts of the graph
where the vertices could belong to the anomaly. This type of problem has received
much attention in the literature over the past decade, see for example [5, 9, 39, 98,
124, 136]. Closely related to this is the planted clique problem, where the anomaly is
a clique. That is, one receives a sample from some random graph and has to decide
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whether a clique has been added on top of this graph [8, 11, 74].
The main difficulty in all of these problems stems from the fact that one does

not know where the anomaly is located. In these problems, the class 𝐻0 typically
contains only a single distribution, so that the null hypothesis 𝐻0 is completely spe-
cified. We call such a hypothesis simple. On the other hand, the class of alternatives
𝐻1 contains several distributions. This is called a composite hypothesis. In our case,
this class contains many closely related distributions, one for each possible location
of the anomaly. Because of this, the class of alternatives will often be indexed by
subsets of vertices and thus has a combinatorial structure.

1.3.2 Performance of a test

When performing a hypothesis test one has to make the decision of either accepting
or rejecting the null hypothesis. To this end, define a test 𝑇𝑛(𝑔) ∈ {0, 1} as any meas-
urable function taking as input an observed graph 𝑔 on 𝑛 vertices. If 𝑇𝑛(𝑔) = 0, then
there is enough reason to believe that the null hypothesis 𝐻0 is true and we say that
the test accepts the null hypothesis; otherwise, when 𝑇𝑛(𝑔) = 1, the alternative hy-
pothesis𝐻1 is deemed correct and we say that the null hypothesis is rejected in favor
of the alternative hypothesis.

There are various ways of measuring the performance of a test, andmost of these
are based on the two types of error one can make [145]. The type-I error is rejecting
the null hypothesis when it is true. Symmetrically, the type-II error is accepting the
null hypothesis when in fact one of the alternative hypotheses in 𝐻1 is true. A com-
mon way of measuring the quality of a test 𝑇𝑛 is by using the so-called worst-case
risk [10, 67, 99]. This is defined as the sum of the maximal probability of type-I and
type-II error, that is

𝑅(𝑇𝑛) ≔ ℙ0(𝑇𝑛(𝐺) ≠ 0) + sup
𝜃∈Ω𝐻1

ℙ𝜃(𝑇𝑛(𝐺) ≠ 1). (1.3)

whereℙ0(⋅) is the distribution of the random graphmodel under the null hypothesis,
andℙ𝜃(⋅) are the distributions under the alternative hypothesis specified by 𝜃 ∈ Ω𝐻1.

In most cases, as the notation already suggests, we will analyze the performance
of a sequence of tests 𝑇𝑛 for a sequence of graphs 𝑔𝑛 as the graph size 𝑛 tends to∞.
However, we will often refer to such a sequence of tests simply as a test when this
causes no confusion. We then say that a test is asymptotically powerful when it has
vanishing risk, that is 𝑅(𝑇𝑛) → 0 as 𝑛 → ∞. This means that the probability of mak-
ing an error becomes smaller as the graphs become larger. Thus an asymptotically
powerful test is able to distinguish between the null hypothesis and the alternative
hypothesis with a high degree of certainty, provided that the observed graph is large
enough. On the other hand, we call a test asymptotically powerless when 𝑅(𝑇𝑛) → 1
as 𝑛 → ∞. This means that the test does not perform substantially better than any
random guess that would completely ignore the observed graph.
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1.3.3 Minimax lower bounds

After one has found an asymptotically powerful test, it is also desirable to know
whether there can exist another test that can do significantly better. Specifically,
given a test 𝑇𝑛, we would like to show that in any scenario where 𝑇𝑛 is not asymp-
totically powerful there cannot exist any other test that is. To this end, we want to
compare the risk of the test 𝑇𝑛 with the theoretically best possible risk, also called
theminimax risk and is given by

𝑅⋆ ≔ inf
𝑇𝑛

𝑅(𝑇𝑛) = inf
𝑇𝑛

sup
𝜃∈Ω𝐻1

ℙ0(𝑇𝑛(𝐺) ≠ 0) + ℙ𝜃(𝑇𝑛(𝐺) ≠ 1), (1.4)

where the infimum is taken over all measurable functions 𝑇𝑛 ∶ 𝐺 ↦ {0, 1}. We
would then like to know whether 𝑅(𝑇𝑛) is close to the minimax risk 𝑅

⋆, in which
case there cannot exist any other test that performs significantly better than 𝑇𝑛. This
is a well-posed problem, but often intractable. Therefore one typically tries to find a
lower-bound for the minimax risk 𝑅⋆ instead. The standard approach for this is to
first reduce the composite alternative hypothesis to a simple one by considering the
average risk [10, 17, 118], given by

𝑅(𝑇𝑛) ≔ ℙ0(𝑇𝑛(𝐺) ≠ 0) + 1
|Ω𝐻1|

∑
𝜃∈Ω𝐻1

ℙ𝜃(𝑇𝑛(𝐺) ≠ 1)

= ℙ0(𝑇𝑛(𝐺) ≠ 0) + ℙ1(𝑇𝑛(𝐺) ≠ 1), (1.5)

where ℙ1(⋅) denotes the average over all distributions in the alternative hypothesis
𝐻1, and for simplicity we assumed thatΩ𝐻1 is finite. Note that it is not always the best
approach to consider the average as in (1.5) and in some cases it might be beneficial
to consider another distribution or weighted average over the class of alternatives
instead. The important part is that we obtain a lower bound on the worst-case risk,
that is 𝑅(𝑇𝑛) ≥ 𝑅(𝑇𝑛). Formany problems the class of alternatives exhibits some kind
of symmetry, so this lower bound is often quite sharp.

Since the average risk can be interpreted as a hypothesis test between two simple
hypotheses, it follows from the Neyman-Pearson lemma that the test that minimizes
the average risk 𝑅(𝑇𝑛) is the so-called likelihood ratio test [118, 144], given by

𝑇LR𝑛 (𝑔) = 𝟙{𝐿(𝑔)>1}, (1.6)

where 𝐿(𝑔) = ℙ1(𝐺 = 𝑔)/ℙ0(𝐺 = 𝑔) is the likelihood ratio of the two simple hypo-
theses from (1.5). Following this approach, we have shown that the worst-case risk
of any test 𝑇𝑛 is greater than or equal to the average risk of the likelihood ratio test
𝑇LR𝑛 . That is, for any test 𝑇𝑛 we have 𝑅(𝑇𝑛) ≥ 𝑅(𝑇LR𝑛 ). In particular, this means that
the minimax risk is bounded by 𝑅⋆ ≥ 𝑅(𝑇LR𝑛 ). Therefore, to show that no test can be
asymptotically powerful we do not have to analyze the risk of every possible test, but
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instead we can simply analyze the average risk of the likelihood ratio test. Although
the likelihood ratio test is generally complicated, there exists analytical machinery
that allows us to effectively analyze its performance. It is then enough to show that
𝑅(𝑇LR𝑛 ) remains bounded away from 0, because then no test can be asymptotically
powerful. Furthermore, if one can show the stronger result that 𝑅(𝑇LR𝑛 ) → 1 then
this implies that all tests are asymptotically powerless.

1.4 Overview of results

The work in this thesis centers around the analysis of community detection methods
for inhomogeneous networks, as well the detection of other types of anomalies such
as testing for the presence of a botnet.

We study existing community detection methods that have so far predominantly
been used in the homogeneous setting, and show how these can be extended to a
setting of inhomogeneous random graphs. This leads to new insights about prop-
erties of the inhomogeneous random graphs we study, and we show how a certain
community detection method can be extended to the inhomogeneous setting in an
optimalmanner. The insights obtained from this also sparked the interest to consider
a related project about the detection of botnets. Lastly, we also consider dynamically
growing graphs using the preferential attachment model, where we investigate when
it is possible to detect a change in the attachment dynamics of the graph. Each of
these projects is described in more detail below.

1.4.1 Detecting a planted clique or dense subgraph

The aim of this project was to answer the question: “What is the smallest community
that can theoretically be detected in an already inhomogeneous graph?”. Although
this problem has been resolved for Erdős-Rényi random graphs [11, 12], we were the
first to address this question in the inhomogeneous setting.

The initial work on this project resulted in novel insights about inhomogeneous
random graphs and, in particular, about the behavior of cliques in these graphs.
Remarkably, the size of the largest clique always takes on one of two consecutive
integers with high probability, and this two-point concentration remains true even
when the graph is highly inhomogeneous. This is presented in Chapter 2. Some of
the ideas from that chapter could also be leveraged to extend these results to quasi-
cliques. This is what we do in Chapter 3, where we show that also the size of the
largest quasi-clique is well concentrated in a large class of dense inhomogeneous
random graphs.

In Chapter 4 we answer our initial question and identify the smallest community
that can be detected in an inhomogeneous random graph. Surprisingly, inhomogen-
eity can be make the detection problem easier than in the homogeneous setting. As
a result of the inhomogeneity, some parts of the graph are more informative than
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others, and this can be used to create a test that is more powerful than it would have
been in a homogeneous graph with the same edge density. Furthermore, we proved
that our test is optimal in the sense that it is impossible for any other test to detect
significantly smaller communities.

1.4.2 Detecting a planted botnet

Communities are typically modeled as more densely connected subgraphs within a
graph, but one is sometimes also interested in subgraphs that are different in other
ways. For example, one could consider an anomaly, such as a botnet, that tries to
mask its presence by not making too many connections. However, the connectivity
structure or underlying geometry of the botnet could still be rather different than
that of normal people or normal vertices, which can be used to detect its presence. In
Chapter 5 we formalized this idea as a testing problem with the goal of detecting the
presence of a homogeneous component in an otherwise random geometric graph.
Here we introduce two different tests that can both detect such a botnet, even when
the botnet is very small. Furthermore, we show that our tests are asymptotically
optimal.

Whereas community detection has already received quite some attention in the
literature, this type of problemhas not. Because of this, there are stillmany variations
and open problems that could be studied related to this project. We discuss several
of these in Chapter 7.

1.4.3 Changepoint detection in the preferential attachment model

Many networks are dynamic and change over time, with some rules concerning the
evolution or growth of the graph. We consider the preferential attachment model
and study what happens when the attachment function changes after some time. In
particular, we investigate whether it is possible to detect a single change in the at-
tachment function. When this change happens early in the graph generation process
then it was already known that such a change can be detected [14, 21]. In Chapter 6
we focus on the case where the attachment function changes at a very late time. We
show that, also in this case, it is possible to detect that the attachment function has
changed, even if the change happens when there are only approximately√𝑛 vertices
missing from the final network.

1.4.4 Summary

In this thesis we create several methods for the detection of communities and other
types of anomalies in networks. To formalize these questions we design new models
and these lead to novel and interesting statistics. Furthermore, we develop new in-
sights in the community structure and behavior of cliques in inhomogeneous random
graphs.
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1.5 General assumptions and notation

Throughout this thesis we are interested in an asymptotic characterization of random
graphs and their properties as the number of vertices 𝑛 increases. When limits are
unspecified, they are assumed to be taken as the number of vertices 𝑛 tends to∞.

We use standard asymptotic notation: 𝑎𝑛 = 𝑂(𝑏𝑛) when |𝑎𝑛/𝑏𝑛| is bounded,
𝑎𝑛 = Ω(𝑏𝑛) when 𝑏𝑛 = 𝑂(𝑎𝑛), 𝑎𝑛 = Θ(𝑏𝑛) when 𝑎𝑛 = 𝑂(𝑏𝑛) and 𝑎𝑛 = Ω(𝑏𝑛),
𝑎𝑛 = 𝑜(𝑏𝑛) when 𝑎𝑛/𝑏𝑛 → 0, and 𝑎𝑛 ≍ 𝑏𝑛 when 𝑎𝑛 = (1 + 𝑜(1))𝑏𝑛. We also use the
probabilistic versions of these: 𝑎𝑛 = 𝑂ℙ(𝑏𝑛) when |𝑎𝑛/𝑏𝑛| is stochastically bounded,
𝑎𝑛 = Ωℙ(𝑏𝑛) when 𝑏𝑛 = 𝑂ℙ(𝑎𝑛), 𝑎𝑛 = Θℙ(𝑏𝑛) when 𝑎𝑛 = 𝑂ℙ(𝑏𝑛) and 𝑎𝑛 = Ωℙ(𝑏𝑛),
and 𝑎𝑛 = 𝑜ℙ(𝑏𝑛) when 𝑎𝑛/𝑏𝑛 converges to 0 in probability. In addition, we say that a
sequence of events holds with high probability if they holds with probability tending
to 1.

Finally, for two numbers 𝑎, 𝑏 ∈ ℝ, we write 𝑎∧𝑏 = min{𝑎, 𝑏}, 𝑎∨𝑏 = max{𝑎, 𝑏},
and [𝑎]+ = max{𝑎, 0}. Finally, the integral part or integer part of 𝑎 ∈ ℝ is denoted
by ⌊𝑎⌋.

1.6 Thesis outline

The remaining chapters of this thesis are based on separate journal publications. The
contents of these chapters is mostly identical to the published version, except for
Chapter 6 which is currently in preparation. In Chapter 7 we conclude this thesis by
discussing several open problems and possible extensions to this work.



Chapter 2

Cliques in rank-1
inhomogeneous random graphs

Based on:
Cliques in rank-1 random graphs: the role of inhomogeneity,

K. Bogerd, R. M. Castro, and R. van der Hofstad,
Bernoulli 26.1 (2020), pp. 253–285.

We study the asymptotic behavior of the clique number in rank-1 inhomogen-
eous random graphs, where edge probabilities between vertices are roughly propor-
tional to the product of their vertex weights. We show that, in many regimes, the
clique number is concentrated on at most two consecutive integers, for which we
provide an expression. Interestingly, the order of the clique number is primarily de-
termined by the overall edge density, with the inhomogeneity only affecting mul-
tiplicative constants or adding at most a log log(𝑛) multiplicative factor. For sparse
enough graphs the clique number is always bounded and the effect of inhomogeneity
completely vanishes.

2.1 Introduction

The clique number of a graph 𝐺 is the size of the largest clique (i.e. the largest com-
plete subgraph) in 𝐺. In an Erdős-Rényi random graph, edges between vertices are
present with the same probability independently of one another. This is sometimes
also called the homogeneous setting because all edges have the same probability of
being included. In this setting, it is well known that the clique number is highly con-
centrated when the graph has a large number of vertices, meaning that with high
probability the clique number takes values in a small interval [93, 125, 126]. In fact,
Matula [125] shows that the clique number converges to one of two consecutive in-
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tegers, and provides an explicit formula for the asymptotic clique size.
In this work, we are interested in understanding the behavior of the clique num-

ber in inhomogeneous randomgraphs, where edges have different occupation probab-
ilities. In such random graphs, the properties of different vertices (e.g. their expected
degree) can be radically different and can take a wide range of values. This is in con-
trast, for instance, with Erdős-Rényi random graphs, where degrees can only take
values in a relative narrow range.

Our work is in part motivated by the statistical problem of community detection.
Formally, this amounts to testing whether a given graph was obtained by “planting”
a clique, or dense subgraph, inside a random graph. Arias-Castro and Verzelen [11,
12] have recently considered this problem with an Erdős-Rényi random graph as the
underlying model. To extend these results to the inhomogeneous setting, one needs
a better understanding of cliques in the corresponding null model; thus, studying the
clique number in inhomogeneous random graphs is a natural starting point.

Relatedwork. Inhomogeneous randomgraphs have receivedmuch attention over
the past decade because they more accurately model the network structure observed
inmany real-world networks. The literature on this subject can be divided into sparse
and dense graphs.

In the sparse setting, the edge probabilities decrease with the graph size such
that the resulting graph has bounded average degree. This setting was first studied
in substantial detail by Bollobás, Janson, and Riordan [31] in which the critical value
for the existence of the giant component was established, as well as several related
fundamental properties of such graphs were derived. This has sparked great interest
in this model, see also [104, 105] and the references therein for an overview of recent
results.

The dense setting (when the average degree is unbounded) leads to the theory of
graphons developed by Lovász and Szegedy [120]. Recently, first order results for the
clique number were also obtained for this case by Doležal, Hladký, and Máthé [66],
and further studied by McKinley [128].

Inhomogeneous random graphs with an intermediate density have received less
attention, although recently results about connectivity have been obtained by Dev-
roye and Fraiman [64], and the diameter was considered by Fraiman and Mitsche
[80].

A special class of the inhomogeneous random graphs above are the so-called
rank-1 randomgraphs. Here each vertex receives aweight and, conditionally on these
weights, edges are present independently with probability equal to the product of
their vertex weights. Many well-known random graphs fit this model, such as the
Erdős-Rényi randomgraph by giving each vertex the sameweight or scale-free graphs
such as the Chung-Lu, Norros-Reittu, and Generalized random graphs by taking the
weights from a power-law [43, 53, 54, 55, 146].
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Our contribution. In this chapter we show that the clique number of rank-1 in-
homogeneous random graphs is concentrated on at most two consecutive integers,
provided that all vertexweights are bounded away from 1. We provide a single expres-
sion for the order of the clique number that is valid for every edge density, bringing
together results of both the sparse and dense regimes.

To derive our results we essentially make use of the same methodology as Mat-
ula [125], namely using the first and secondmoment methods to obtain, respectively,
upper and lower bounds for the clique number. The main contribution here lies in
the definition of what we call the typical clique number 𝜔𝑛, which is the point where
the clique number concentrates around. This quantity is defined implicitly, and we
show that this is indeed a sound definition. Furthermore, the inhomogeneity of these
graphs substantially complicates the derivation of the lower bounds, which now re-
quires significantly more effort than for Erdős-Rényi random graphs.

We find quite different asymptotic behaviors of the clique number depending on
the edge density of the graph, although our results are more interesting when the
average degree diverges. In sparse graphs, the clique number is always bounded re-
gardless of the “amount of inhomogeneity”, and the only parameter that affects the
asymptotic clique number is the edge density. In dense graphs, the clique number
behaves similarly as in an Erdős-Rényi random graph. Specifically, the clique num-
ber is always of order log(𝑛), with the inhomogeneity only affecting the constants.
Interestingly, graphs with intermediate edge density can be rather different, with the
inhomogeneity sometimes adding a log log(𝑛)multiplicative factor to the cliquenum-
ber.

2.2 Main results

In this chapter, we consider a random graph model denoted by 𝔾(𝑛;𝑊, 𝜆𝑛). This
model has three parameters: the number of vertices 𝑛, the weight distribution 𝑊,
and the scaling 𝜆𝑛. An element of 𝔾(𝑛;𝑊, 𝜆𝑛) is a simple graph 𝐺 = (𝑉, 𝐸) that
has 𝑛 ∈ ℕ vertices with vertex set 𝑉 = [𝑛] ≔ {1, … , 𝑛}, and a random edge set
𝐸. Each vertex 𝑖 ∈ 𝑉 is assigned a weight, which is an independent copy 𝑊𝑖 of the
non-negative random variable𝑊 ∈ [0,∞). In other words,𝑊𝑖 are i.i.d. non-negative
random variables with the same distribution as𝑊. Conditionally on these weights,
the presence of an edge between two vertices 𝑖, 𝑗 ∈ 𝑉, with 𝑖 ≠ 𝑗, is modeled by
independent Bernoulli random variables with success probability

𝑝𝑖𝑗 ≔ ℙ((𝑖, 𝑗) ∈ 𝐸 || (𝑊𝑘)𝑘∈𝑉) =
𝑊𝑖
𝜆𝑛

⋅
𝑊𝑗

𝜆𝑛
∧ 1, (2.1)

where the scaling 𝜆𝑛 ∶ ℕ ↦ ℝ is a deterministic sequence. Note that the weights
do not depend on the graph size 𝑛. This is why the introduction of the scaling 𝜆𝑛 is
useful, as it allows us to naturally control the edge density of the graph. We assume
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that the scaling is at most of order √𝑛, because otherwise we are in the trivial case
where the graph is asymptotically almost or completely empty.

Random graph models like the classical Erdős-Rényi random graphs are homo-
geneous in the sense that for a typical realization the degrees of all vertices tend to
take a narrow range of values. Furthermore, all parts of the graph look more or less
the same. However, graphs arising in real-world settings do not generally satisfy this
property and tend to be inhomogeneous, with a relatively wide range of different ver-
tex degrees across the entire graph. In our model the weight distribution𝑊 determ-
ines the inhomogeneity of the graph, and the heavier the tails of this distribution the
more inhomogeneous the graph is. Recall that the weight distribution is not a func-
tion of the graph size and without any scaling factor the resulting graphs are dense
(i.e. with a number of edges that is quadratic in the graph size 𝑛). The parameter 𝜆𝑛
allows us, therefore, to control the edge density. When 𝜆𝑛 is constant, we are in the
dense regime. On the other hand, when 𝜆𝑛 ≈ √𝑛, we are in the sparse regime with
a number of edges that is linear in 𝑛, which corresponds to graphs with finite aver-
age degree. Choices of 𝜆𝑛 in between those extremes lead to graphs of intermediate
density with a number of edges more than linear but less than quadratic in 𝑛.

2.2.1 The clique number

Ourmain contribution is to show that the clique number of a graph𝐺 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛),
denoted by 𝜔(𝐺), is concentrated on at most two consecutive integers provided that
the following assumptions hold:

Assumption 2.1. There exists 𝛿 > 0 such that

ℙ (max
𝑖∈𝑉

𝑊𝑖 ≤
𝜆𝑛
1 + 𝛿) → 1, as 𝑛 → ∞. (2.2)

This assumption, which seems relatively benign, ensures that all edge probabil-
ities are bounded away from 1with high probability. Alternatively, it can be regarded
as a restriction on the denseness of the graph, requiring that 𝜆𝑛 grows fast enough,
which causes the resulting graphs not to become too dense. Our second assumption
strengthens the above for large 𝜆𝑛.

Assumption 2.2. If lim inf𝑛→∞ log(𝜆𝑛)/ log(𝑛) > 0, then for every 𝜂 > 0

ℙ (max
𝑖∈𝑉

𝑊𝑖 ≤
𝜆𝑛
1 + 𝜂) → 1, as 𝑛 → ∞. (2.3)

Note that this assumption is only a restrictionwhen the scaling is large (i.e. when
𝜆𝑛 is a positive power of 𝑛). Moreover, in many cases, Assumption 2.2 is a direct con-
sequence of Assumption 2.1 (e.g. when all or enough moments of 𝑊 are finite, or
when𝑊 has a regularly-varying distribution). We only need Assumption 2.2 to elim-
inate some pathological cases. This issue is discussed in more detail in Section 2.4.
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The clique number in graphs from our model depends both on the amount of
inhomogeneity (captured by 𝑊) and the average edge density (which is close to
(𝔼[𝑊]/𝜆𝑛)2). Under Assumptions 2.1 and 2.2, it turns out that the relation between
the conditional moments of the weights fully characterizes the asymptotic clique
number. To simplify notation define the truncated weight 𝑊̃ as the random variable
with distribution

ℙ (𝑊̃ ≤ 𝑥) = ℙ (𝑊 ≤ 𝑥 |||𝑊 ≤
𝜆𝑛
1 + 𝛿) , for all 𝑥 ∈ ℝ, (2.4)

where 𝛿 > 0 comes fromAssumption 2.1. In other words, the distribution of 𝑊̃ is the
conditional distribution of𝑊 given𝑊 ≤ 𝜆𝑛/(1+𝛿). The relative truncated moments
(abbreviated to relative moments in the rest of this chapter) are defined as follows:

Definition 2.1 (Relative moments). Given a weight𝑊 and scaling 𝜆𝑛, the 𝑟-th relat-
ive moment is defined by

𝑐𝑛,𝑟 =
𝔼[𝑊 𝑟 ||𝑊 ≤ 𝜆𝑛

1+𝛿
]

𝔼[𝑊 ||𝑊 ≤ 𝜆𝑛
1+𝛿

]
𝑟 =

𝔼[𝑊̃ 𝑟]
𝔼[𝑊̃]𝑟

. (2.5)

Note that the relative moments 𝑐𝑛,𝑟 depend on the graph size 𝑛, but only through
the scaling 𝜆𝑛. To avoid notational clutter, we often omit the explicit dependence of
𝑐𝑛,𝑟 on 𝛿.

Building towards our result stating that the clique number is highly concen-
trated, we define next the typical clique number. Unfortunately, the typical clique
number depends in a cumbersome way on the relative moments 𝑐𝑛,𝑟−1. Therefore, it
is only possible to give an implicit characterization in the general setting.

Definition 2.2 (Typical clique number). Let𝜔𝑛 ∈ [1,∞) denote the solution in 𝑟 ≥ 1
of

𝑟 =
log(𝑛) − log(𝑟) + log(𝑐𝑛,𝑟−1) + 1

log(𝜆𝑛/𝔼[𝑊̃])
+ 1 . (2.6)

We call 𝜔𝑛 the typical clique number of 𝔾(𝑛;𝑊, 𝜆𝑛).

Note that the typical clique number 𝜔𝑛 needs not be an integer. Also, it is not
immediately obvious that𝜔𝑛 is well defined because there could either be no solution
or (2.6)might havemultiple solutions. However, the following lemma shows that the
typical clique number 𝜔𝑛 is well defined:

Lemma 2.1. Under Assumption 2.1 the typical clique number 𝜔𝑛 from Definition 2.2
exists and is unique.

The following theorem is our main result and shows that asymptotically almost
all graphs generated by ourmodel have a clique number that differs at most one from
the typical clique number 𝜔𝑛:
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Theorem 2.1. Let 𝜀 > 0 be arbitrary. Under Assumptions 2.1 and 2.2 the clique num-
ber 𝜔(𝐺𝑛) of a random graph 𝐺𝑛 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛) satisfies

lim
𝑛→∞

ℙ (𝜔(𝐺𝑛) ∈ [⌊𝜔𝑛 − 𝜀⌋, ⌊𝜔𝑛 + 𝜀⌋]) = 1, (2.7)

where 𝜔𝑛 is the typical clique number from Definition 2.2.

It is important to note that the typical clique number 𝜔𝑛 depends on the 𝛿 from
Assumption 2.1 through the behavior of the truncated weights 𝑊̃. This might give
the impression that the clique number 𝜔(𝐺𝑛) of a graph 𝐺𝑛 must also depends on
𝛿, which it obviously does not. However, provided 𝛿 is small enough to ensure that
Assumption 2.1 holds, the dependence of the typical clique number𝜔𝑛 on 𝛿 vanishes.
This is further discussed in Section 2.4 below.

Theorem 2.1 shows that the clique number converges to at most one of two pos-
sible values with high probability, provided we take 𝜀 < 1/2. This shows two-point
concentration of the clique number for rank-1 inhomogeneous random graphs. To
find the explicit values of these two points, we need to find an explicit solution of
(2.6), which is generally difficult, see Section 2.6 for the details. To facilitate this, we
give two alternative asymptotic characterizations of the typical clique number 𝜔𝑛.

Lemma 2.2. Under Assumption 2.1 the typical clique number 𝜔𝑛 is equal to the solu-
tion in 𝑟 of

𝑟 = log𝑏(𝑛𝑐𝑛,𝑟−1) − log𝑏 log𝑏(𝑛𝑐𝑛,𝑟−1) + log𝑏(e) + 1 + 𝑜(1) , (2.8)

where we abbreviate 𝑏 = 𝜆𝑛/𝔼[𝑊̃].

Note that when the weight distribution is degenerate (i.e. has probability 1 on a
single point) we obtain an Erdős-Rényi random graph, and 𝑐𝑛,𝑟−1 = 1 for all 𝑟 ∈ ℕ.
Using Lemma 2.2, our result in Theorem 2.1 reduces to the main result in [125]. On
the other hand, whenwe consider inhomogeneous graphs, Lemma 2.2 shows that we
essentially have to rescale the number of vertices 𝑛 by the relative moments 𝑐𝑛,𝑟−1 to
account for the inhomogeneity.

The second characterization pertains the setting where the scaling is such that
it gives rise to relatively sparse graphs. In this case, many of the edge probabilities
have become so small that the shape of the distribution𝑊 stops playing a role, and
the typical clique number 𝜔𝑛 converges to a constant independent of the weight dis-
tribution:

Lemma 2.3. Let 𝛼 ∈ (0, 1). Under Assumption 2.1 the following are equivalent:
(i) The scaling satisfies 𝜆𝑛 = 𝑛𝛼+𝑜(1).
(ii) The typical clique number satisfies 𝜔𝑛 = 1 + 1/𝛼 + 𝑜(1).

This result states thatwhen the typical clique number𝜔𝑛 converges to a constant,
the scaling 𝜆𝑛 is essentially a power of 𝑛, and the converse is also true.
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It is important to note that we required some assumptions to show two-point
concentration of the clique number. A natural question to ask is whether these as-
sumptions are strictly speaking necessary. Although we cannot formally make this
statement, we can argue that Assumption 2.1 cannot be significantly relaxed: con-
sider for instance a graph 𝐺𝑛 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛) where the weights have a positive prob-
ability 𝜌 > 0 of becoming larger than the scaling 𝜆𝑛, that is ℙ(𝑊 ≥ 𝜆𝑛) = 𝜌 > 0.
Then the vertices belonging to these weights form a clique because the probability of
an edge between any of these vertices equals 1. Hence, the clique number will have
approximately a binomial distribution, that is 𝜔(𝐺𝑛) ∼ Bin(𝑛, 𝜌), and we cannot ex-
pect the clique number 𝜔(𝐺) to be concentrated on any fixed length interval.

This shows that Assumption 2.1 defines a rather sharp threshold. Below this
threshold the clique number 𝜔(𝐺) is at most logarithmic and highly concentrated,
whereas above this threshold the clique number has polynomial size and cannot be
concentrated on any fixed length interval.

2.3 Examples

Theorem 2.1 shows that the typical clique number𝜔𝑛must be very close to the clique
number𝜔(𝐺𝑛) of a graph𝐺𝑛 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛). However, Definition 2.2 does not give an
explicit expression for 𝜔𝑛, but rather it gives an implicit definition as the solution of
the fixed-point equation (2.6). Nevertheless, we may derive the asymptotic behavior
of 𝜔𝑛 for several interesting choices of weights 𝑊 and scalings 𝜆𝑛, illustrating the
different regimes one might encounter. Note that in most cases these derivations are
far from trivial, see Section 2.6 for the details. Interestingly, in all the examples that
we consider, the typical clique number 𝜔𝑛 is primarily determined by the scaling,
namely 𝜔𝑛 ≈ 𝑘𝑛 log𝜆𝑛/𝔼[𝑊](𝑛)where 𝑘𝑛 is typically just a constant but can be as large
as 𝑂(log log𝑛).

The maximum weight in the graph plays a crucial role in Assumption 2.1 and it
is directly related to the tail probabilities of the weight distribution by the relation

ℙ (max
𝑖∈𝑉

𝑊𝑖 ≤ 𝑥) = (1 − ℙ (𝑊 > 𝑥))𝑛. (2.9)

Because of this relation we find that the tail behavior of the weight distribution plays
a key role in the asymptotic behavior of the clique number, and we identify three
main classes of weight distributions based on this.

When the weight distribution has bounded support, the behavior of the clique
number is very similar to an Erdős-Rényi random graph. For weights with unboun-
ded support, the behavior of the clique number depends on how heavy the tails are.
Forweightswith heavy-tailed distributions, the scalingmust grow roughly as a power
of 𝑛 to ensure that Assumption 2.1 is satisfied. This restriction on the scaling makes
the graph highly sparse, which causes the effect of inhomogeneity due to the weight
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distribution to disappear. Interestingly, when the weights have a light-tailed distri-
bution, the behavior of the clique number strongly depends on the scaling 𝜆𝑛 with
different regimes depending on how 𝜆𝑛 is chosen.

2.3.1 Weights with bounded support

In this section, we consider the clique number 𝜔(𝐺𝑛) for graphs 𝐺𝑛 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛)
with weight distributions 𝑊 that have bounded support. The best-known example
in this class is the Erdős-Rényi random graph. In our model, this corresponds to
a degenerate weight distribution 𝑊, with all the mass at 1 (denoted by Degen(1)).
Note that Assumption 2.1 is trivially satisfied by taking 𝜆𝑛 ≥ 𝑠 for any constant 𝑠 > 1,
and the edge probability is simply 𝑝𝑛 = 1/𝜆2𝑛. In this case, the relative moments are
𝑐𝑛,𝑟−1 = 1 for all 1 ≤ 𝑟 ≤ 𝑛, and we immediately see from Lemma 2.2 that

𝜔𝑛 = log𝜆𝑛(𝑛) − log𝜆𝑛 log𝜆𝑛(𝑛) + log𝜆𝑛(e) + 1 + 𝑜(1)

= 2 log1/𝑝𝑛(𝑛) − 2 log1/𝑝𝑛 log1/𝑝𝑛(𝑛) + 2 log1/𝑝𝑛(e/2) + 1 + 𝑜(1). (2.10)

This result was also obtained by Matula [125].
For other weight distributions, vertices with large weights are more likely to

be in the largest clique than vertices with small weights. This idea can be used to
show that the first order behavior of the clique number remains as in (2.10) but with
𝑝𝑛 = (𝑤max/𝜆𝑛)2 and where 𝑤max is the supremum of the support of 𝑊. Therefore,
for weights with bounded support, the first order behavior of the clique number re-
mains unchanged when we replace the random weights𝑊 by the maximum of their
support𝑤max. This happens because vertices with small weight have, asymptotically,
a negligible probability of being part of the largest clique.

To see this, note that the edge probabilities are bounded by 𝑝𝑖𝑗 ≤ (𝑤max/𝜆𝑛)2 for
all 𝑖 ≠ 𝑗 ∈ 𝑉. Plugging this into (2.10) gives the following high probability upper
bound on the clique number 𝜔(𝐺𝑛) of a graph 𝐺𝑛 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛),

𝜔(𝐺𝑛) ≤ (1 + 𝑜(1))
log(𝑛)

log(𝜆𝑛/𝑤max)
. (2.11)

To obtain a matching lower bound we can use the following simple heuristic. In-
stead of considering the whole graph, consider the subgraph induced by the ver-
tices with large enough weights, in particular the subgraph induced by the vertices
𝑈𝑛 = {𝑖 ∈ 𝑉 ∶ 𝑊𝑖 > 𝑡𝑛} for some 𝑡𝑛. On this subgraph all weights are larger than 𝑡𝑛,
and therefore we can bound the edge probability by 𝑝𝑖𝑗 ≥ (𝑡𝑛/𝜆𝑛)2 for all 𝑖 ≠ 𝑗 ∈ 𝑈𝑛.
Since |𝑈𝑛| ≈ 𝑛ℙ(𝑊 > 𝑡𝑛) we can use (2.10) to obtain the following high probability
lower bound on the clique number,

𝜔(𝐺𝑛) ≥ (1 + 𝑜(1))
log(|𝑈𝑛|)
log(𝜆𝑛/𝑡𝑛)

= (1 + 𝑜(1))
log(𝑛) + log(ℙ(𝑊 > 𝑡𝑛))

log(𝜆𝑛/𝑡𝑛)
. (2.12)
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Note that this lower bound holds for every 𝑡𝑛, so we can find an optimal 𝑡𝑛 that
maximizes the right-hand side of (2.12). For weights with bounded support, taking
𝑡𝑛 = 𝑤max − 𝑜(1) suffices, provided that the 𝑜(1) term vanishes slowly enough to
ensure that logℙ(𝑊 > 𝑡𝑛) = 𝑜(log(𝑛)). This gives

𝜔(𝐺𝑛) = (1 + 𝑜(1))
log(𝑛)

log(𝜆𝑛/𝑤max)
. (2.13)

This is precisely the leading order behavior in (2.10), but with 𝑝𝑛 = (𝑤max/𝜆𝑛)2.
Determining the asymptotics of the clique number 𝜔(𝐺𝑛) more accurately re-

quires significantly more effort, because the argument above no longer suffices and
one needs to actually solve (2.6) from Definition 2.2. In Table 2.1 the typical clique
number is shown for some weight distributions. As explained above, the first or-
der behavior is the same in all these examples. However, it can clearly be seen that
weights with less mass around the maximum of their support have a smaller second
order term, as expected.

Table 2.1: The asymptotic behavior of the typical clique number 𝜔𝑛 for some weights𝑊 with
support on [0, 1]. Here Γ(⋅) denotes the gamma function. See Section 2.6 for the derivation of
these results.

𝑊 Typical clique number 𝜔𝑛

Degen(1) log𝜆𝑛(𝑛) − log𝜆𝑛 log𝜆𝑛(𝑛) + log𝜆𝑛(e) + 1 + 𝑜(1)

Ber(𝑞) log𝜆𝑛(𝑛𝑞) − log𝜆𝑛 log𝜆𝑛(𝑛𝑞) + log𝜆𝑛(e) + 1 + 𝑜(1)

Unif(0, 1) log𝜆𝑛(𝑛) − 2 log𝜆𝑛 log𝜆𝑛(𝑛) + log𝜆𝑛(e) + 1 + 𝑜(1)

Beta(𝛼, 𝛽) log𝜆𝑛(𝑛) − (1 + 𝛽) log𝜆𝑛((1 + 𝛽) log𝜆𝑛(𝑛))
+ log𝜆𝑛(e) + log𝜆𝑛(Γ(𝛼 + 𝛽)/Γ(𝛼)) + 1 + 𝑜(1)

2.3.2 Weights with light tails

In this section, we consider the clique number 𝜔(𝐺𝑛) for graphs 𝐺𝑛 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛)
withweight distributions𝑊 that have unbounded support but light tails. This is argu-
ably the most interesting setting, and where the effect of inhomogeneity is the most
pronounced. For such weight distributions the maximum weight 𝑀𝑛 ≔ max𝑖∈𝑉𝑊𝑖
is typically highly concentrated around its expectation 𝔼[𝑀𝑛]. Therefore, we can
choose any scaling 𝜆𝑛 slightly larger than 𝔼[𝑀𝑛] to satisfy Assumption 2.1. For this
class of distributions we observe two very distinct behaviors depending on the choice
of scaling 𝜆𝑛.

The slowest scaling that still ensures that Assumption 2.1 is satisfied is 𝜆𝑛 ≈
(1 + 𝜑)𝔼[𝑀𝑛], with 𝜑 > 0. For a given weight distribution, this is the densest graph
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for which we can apply Theorem 2.1. In this case, we see that the shape of the weight
distribution has a real impact on the asymptotic behavior of the typical clique number
𝜔𝑛, as shown in Table 2.2. In other words, the asymptotic behavior of the clique
number depends on the chosen weight distribution, and this amounts to more than
constant multiplicative factors in the various terms.

We consider three distributions, namely the half-normal, the Gamma and the
log-normal. For both the half-normal andGamma distributionwe see that the typical
clique number is of order log(𝑛), whereas in an Erdős-Rényi random graph with the
same edge density the cliques are smaller, of order log(𝑛)/ log log(𝑛). For log-normal
weights the first order behavior of the typical clique number 𝜔𝑛 is the same in the
corresponding Erdős-Rényi random graph although with different constants. Note
that the effect of inhomogeneity is muchweaker for log-normal weights. Because the
log-normal distribution is “nearly” heavy tailed, this is consistent with our findings
in the next section, where we show that, for heavy-tailed weights, the specific shape
of the distribution is not relevant anymore.

If the scaling is such that Assumption 2.1 is more easily satisfied (and therefore
resulting in sparser graphs) then the contribution of the weight distribution becomes
far less prominent. In particular, we consider 𝜆𝑛 ≈ 𝔼[𝑀𝑛]1+𝜑, with 𝜑 > 0. This
choice of scaling leads to behavior that is qualitatively similar to that in Section 2.3.1.
As soon as 𝜑 > 0, the resulting graphs become so sparse that the shape of the weight
distribution has no severe impact on the asymptotic behavior of the typical clique
number𝜔𝑛, and onlymultiplicative factors are affected. This can be seen inTable 2.3.

Table 2.2: The asymptotic behavior of the typical clique number 𝜔𝑛 for some light-tailed
weights 𝑊 and scaling 𝜆𝑛 ≈ (1 + 𝜑)𝔼[𝑀𝑛] with 𝜑 > 0 arbitrary. For comparison we
include the clique number of an Erdős-Rényi random graph with the same edge dens-
ity, that is 𝑝𝑛 = (𝔼[𝑊]/𝜆𝑛)2. Here Γ(⋅) is the gamma function, and we write 𝜉𝑘(𝜑) =
−𝑘/𝒲−1(−1/(e(1 + 𝜑)𝑘)) ∈ (0, 1), where 𝒲−1(⋅) is the lower branch of the Lambert-W func-
tion, see (2.39). See Section 2.6 for the derivation of these results.

𝑊 𝜆𝑛 Typical clique number 𝜔𝑛

|N(0, 𝜎)| (1 + 𝜑)√2𝜎2 log(𝑛) (1 + 𝑜(1)) 𝜉2(𝜑) log(𝑛)

Comparable Erdős-Rényi graph (1 + 𝑜(1)) 2 log(𝑛)/ log log(𝑛)

Gamma(𝛼, 𝛽) (1 + 𝜑) log(𝑛)/𝛽 (1 + 𝑜(1)) 𝜉1(𝜑) log(𝑛)

Comparable Erdős-Rényi graph (1 + 𝑜(1)) log(𝑛)/ log log(𝑛)

LN(0, 1) (1 + 𝜑) exp(√2 log(𝑛)) (1 + 𝑜(1))√2 log(𝑛)

Comparable Erdős-Rényi graph (1 + 𝑜(1))√(1/2) log(𝑛)
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Table 2.3: The asymptotic behavior of the typical clique number 𝜔𝑛 for some light-tailed
weights 𝑊 and scaling 𝜆𝑛 ≈ 𝔼[𝑀𝑛]1+𝜑 with 𝜑 > 0 arbitrary. For comparison we include
the clique number of an Erdős-Rényi random graph with the same edge density, that is
𝑝 = (𝔼[𝑊]/𝜆𝑛)2. See Section 2.6 for the derivation of these results.

𝑊 𝜆𝑛 Typical clique number 𝜔𝑛

|N(0, 𝜎)| √2𝜎2 log(𝑛)
1+𝜑

(1 + 𝑜(1)) (2/𝜑)(log(𝑛)/ log log(𝑛))

Comparable Erdős-Rényi graph (1 + 𝑜(1)) (2/(1 + 𝜑))(log(𝑛)/ log log(𝑛))

Gamma(𝛼, 𝛽) log(𝑛)1+𝜑/𝛽 (1 + 𝑜(1)) (1/𝜑)(log(𝑛)/ log log(𝑛))

Comparable Erdős-Rényi graph (1 + 𝑜(1)) (1/(1 + 𝜑))(log(𝑛)/ log log(𝑛))

LN(0, 1) exp(√2 log(𝑛))1+𝜑 (1 + 𝑜(1)) ((1 + 𝜑) −√𝜑(2 + 𝜑))√2 log(𝑛)

Comparable Erdős-Rényi graph (1 + 𝑜(1)) (1/(1 + 𝜑))√(1/2) log(𝑛)

The heuristic to obtain a high probability lower bound on the clique number,
as explained in the previous section, also remains valid for light-tailed distributions.
Interestingly, also in this case the lower bound seems to be tight. That is, for the 𝑡𝑛 that
maximises the lower bound in (2.12), wefind exactly the same behavior, including the
same constants, of the clique number as in Tables 2.2 and 2.3. However, because the
weights are no longer bounded from above, we are not aware of a simple method to
obtain amatching upper bound. Nevertheless, we strongly suspect that this heuristic
also gives the correct first order behavior of the clique number for other light-tailed
distributions.

2.3.3 Weights with heavy tails

In this section we consider the clique number 𝜔(𝐺𝑛) for graphs 𝐺𝑛 ∼ 𝔾(𝑛;𝑊, 𝜆𝑛)
with weight distributions 𝑊 that have heavy tails, which we define as distributions
whose moments are not all finite. For these distributions, finding the clique number
is surprisingly straightforward. To apply Theorem 2.1 we need a scaling 𝜆𝑛 such that
Assumptions 2.1 and 2.2 are satisfied, and we necessarily have 𝜆𝑛 ≥ 𝑛𝛼+𝑜(1) for some
𝛼 > 0. Thismeans that for heavy-tailed distributionswe can always apply Lemma2.3,
which shows that the typical clique number 𝜔𝑛 is bounded and completely determ-
ined by the scaling.

A notable special case of this was treated in [109] and [24, 25], where the clique
number in scale-free graphs with a model similar to ours was considered. In those
works the weights have a power-law distribution and the scaling is chosen as 𝜆𝑛 =
√𝑛. The authors find that the clique number asymptotically becomes either 2 or 3
when the variance of the weights is finite. Using Lemma 2.3 we first determine that
𝜔𝑛 → 3, since the scaling is 𝜆𝑛 = √𝑛. Therefore, it follows from Theorem 2.1 that,
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asymptotically, the clique number must be either 2 or 3, precisely the same result.
Note that for this scaling, having weights with finite variance and Assumptions 2.1
and 2.2 are equivalent.

In the highly inhomogeneous case, where the weights have infinite variance, we
require a scaling of 𝜆𝑛 ≥ 𝑛𝛼+𝑜(1) for some 𝛼 > 1/2 in order to satisfy Assumptions
2.1 and 2.2. However, when the scaling is this large, the resulting graphs are asymp-
totically almost or completely empty. On the other hand, as explained at the end of
Section 2.2, when 𝛼 ≤ 1/2 the clique number will approximately have a binomial
distribution and thus cannot concentrate on any fixed length interval.

2.4 Discussion and overview

In this section we remark on our results and discuss some possibilities for future
work.

Typical clique number. Let us first remark on our main result, Theorem 2.1, that
shows that the clique number 𝜔(𝐺𝑛) of a graph 𝐺𝑛 and the corresponding typical
clique number 𝜔𝑛 must be very close. As explained in Section 2.2 the typical clique
number 𝜔𝑛 still depends on the 𝛿 from Assumption 2.1, whereas the clique number
𝜔(𝐺𝑛) of a graph 𝐺𝑛 obviously does not. This is certainly not desirable, and it should
be possible to define the typical clique number𝜔𝑛 independently of 𝛿. In all examples
that we considered in Section 2.3 this is indeed possible, since in those examples:

𝔼[𝑊̃ 𝑟]
𝔼[𝑊̃]𝑟

=
𝔼[𝑊 𝑟 ||𝑊 ≤ 𝜆𝑛

1+𝛿
]

𝔼[𝑊 ||𝑊 ≤ 𝜆𝑛
1+𝛿

]
𝑟 = (1 + 𝑜(1))𝔼[𝑊

𝑟]
𝔼[𝑊]𝑟

, for all 𝑟 ≤ 𝜔𝑛. (2.14)

We conjecture that a similar statement should hold in general, or at least for a wide
class of weights 𝑊 and scalings 𝜆𝑛. When proven, this would imply that the trun-
cation in Definitions 2.1 and 2.2 can be ignored. This would solve the issue of the
seeming dependence between the typical clique number 𝜔𝑛 and the 𝛿 from Assump-
tion 2.1, and at the same time, make explicit computations of the typical clique num-
ber 𝜔𝑛 somewhat easier.

Connection betweenAssumptions 2.1 and 2.2. Most of our results only require
Assumption 2.1, but to prove our main result we require the slightly stronger As-
sumption 2.2. However, in most cases that we checked, Assumption 2.2 is implied
from Assumption 2.1, and the choice of weight distribution𝑊 and scaling 𝜆𝑛.

Suppose that 𝜆𝑛 ≥ 𝑛𝛼+𝑜(1) for some 𝛼 ∈ (0, 1). Then we necessarily need to have
𝔼[𝑊 1/𝛼] < ∞ in order to satisfy Assumption 2.1. When a slightly larger moment
of 𝑊 is also finite, that is 𝔼[𝑊 1/𝛼+𝜀] < ∞ for some 𝜀 > 0, then both assumptions
are simultaneously satisfied. To see this, note that by the moment condition we have
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ℙ(𝑊 1/𝛼+𝜀 > 𝑛) ≤ 𝑜(1/𝑛). Now take any 𝜂 > 0, then for 𝑛 large enough

ℙ (𝑊 >
𝜆𝑛
1 + 𝜂) ≤ ℙ (𝑊 > 𝑛𝛼+𝑜(1)

1 + 𝜂 )

≤ ℙ(𝑊 > 𝑛𝛼/(1+𝛼𝜀)) = ℙ(𝑊 1/𝛼+𝜀 > 𝑛) ≤ 𝑜(1/𝑛). (2.15)

Hence, both Assumptions 2.1 and 2.2 are simultaneously satisfied.
Alternatively, Assumption 2.1 is also sufficient when 𝑊 is regularly varying of

index 𝛽 < 0. In this case, for any 𝜂 > 0, we have

ℙ (𝑊 > 𝜆𝑛
1+𝜂

)

ℙ (𝑊 > 𝜆𝑛
1+𝛿

)
= (1 + 𝑜(1)) (

1 + 𝜂
1 + 𝛿)

−𝛽
. (2.16)

By Assumption 2.1 we have ℙ(𝑊 > 𝜆𝑛/(1 + 𝛿)) = 𝑜(1/𝑛); therefore, we also have
ℙ(𝑊 > 𝜆𝑛/(1 + 𝜂)) = 𝑜(1/𝑛). Hence, Assumption 2.2 is also satisfied.

Different models. In our model, the edge probabilities are 𝑝𝑖𝑗 = min(𝑋𝑖𝑗, 1),
where 𝑋𝑖𝑗 = (𝑊𝑖/𝜆𝑛) ⋅ (𝑊𝑗/𝜆𝑛). We require the minimum because otherwise some
edge probabilities could exceed 1. To achieve the same effect one has other options;
some common examples are ̂𝑝𝑖𝑗 = 1 − exp(−𝑋𝑖𝑗) or ̃𝑝𝑖𝑗 = 𝑋𝑖𝑗/(1 + 𝑋𝑖𝑗). Changing
the model in this manner does not have a significant influence on the asymptotic
clique number, provided Assumption 2.1 holds. To see this, note that we can bound
the edge probabilities of these models by min(𝑋𝑖𝑗/2, 1) ≤ ̂𝑝𝑖𝑗, ̃𝑝𝑖𝑗 ≤ min(𝑋𝑖𝑗, 1) with
high probability. Obviously, the clique number is then also bounded by the clique
numbers obtained from the models with edge probabilities as given in these bounds.
Since these bounds differ only by a constant multiplicative factor, it is easily seen
fromDefinition 2.2 that both lead to the same leading order asymptotics of the clique
number when the scaling is diverging. When the scaling is constant, the situation
is more subtle and the precise clique number will change by a multiplicative factor
that depends on the specific model considered.

Instead of the change in truncation described above, we could also consider dif-
ferent interactions between the weights. We currently only consider so-called rank-1
inhomogeneous random graphs, where the probability of an edge is proportional to
the product of the weights of the incident vertices. Instead, we could model different
types of interaction by considering an arbitrary symmetric function, called a kernel.
It would be interesting to see whether our results can be extended to this more gen-
eral setting. In particular, whether the two-point concentration of the clique number
is specific to rank-1 inhomogeneous random graphs, or whether this remains true for
a wider class of kernels.

When weights have bounded support, the heuristic explained in Section 2.3.1
can be extended to obtain first order behavior of the clique number for a large class
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of kernels. For these kernels, this gives a simpler approach to finding the asymptotic
behavior of the clique number than the method described in [66] which provided
a general answer. Moreover, based on the results in Section 2.3.2 it might also be
possible to extend these results to unbounded kernels.

Planted clique problem. In the planted clique problem one starts by generating a
graph as usual. After generating this graph we select a small number of vertices and
connect all of them, so that they form a clique. Given such a graph with a planted
clique, the problem is to locate this clique with high probability.

The work on this problem has focussed on two cases. In the first case, the under-
lying graph is an Erdős-Rényi random graph. In principle, this problem can be solved
as soon as the planted clique is of size 𝑂(log(𝑛)). However, if one is interested in al-
gorithms that can recover the largest clique in polynomial time, then the best-known
algorithms require the planted clique to be of size 𝑂(√𝑛), see [8, 62, 74]. The second
case focusses on the very inhomogeneous case, with graphs that have a power-law
degree distribution. Here the largest clique can be recovered in polynomial time, see
[82, 109].

Alternatively, one could consider the similar hypothesis testing problem. Here
we observe a graph where it is unknown whether a clique was planted, and the prob-
lem is to decide whether it was planted or not. Instead of a clique, one could plant
a denser subgraph and test whether that was planted or not, see [11, 12]. Using the
model from Section 2.2 all these problems can be considered in a single framework.
It would be particularly interesting to see what the effects of inhomogeneity and
sparsity are on the computational complexity in these problems.

2.5 Proofs

This section is devoted to proving the results in Section 2.2. The proofs of Lemmas
2.1, 2.2, and 2.3 are fairly self explanatory. To prove Theorem 2.1 we use the same
approach as Matula [125], using the first and second moment method to obtain an
upper and lower bound on the clique number separately.

2.5.1 Proof of Lemma 2.1: Existence and uniqueness of the typical clique
number

Lemma 2.1 shows that Assumption 2.1 is sufficient to guarantee the existence and
uniqueness of the typical clique number𝜔𝑛 inDefinition 2.2. Wefirst show that there
must be at least one solution to (2.6) and then show that this solution is unique.

To simplify notation, let 𝑓𝑛(𝑟) be the right-hand side of (2.6), that is

𝑓𝑛(𝑟) =
log(𝑛) − log(𝑟) + log(𝑐𝑛,𝑟−1) + 1

log (𝜆𝑛/𝔼[𝑊̃])
+ 1. (2.17)
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To prove the lemma we must show that the solution set of (2.6), given by {𝑟 ≥ 1 ∶
𝑟 = 𝑓𝑛(𝑟)}, is non-empty and consists of a single point. First note that 𝑐𝑛,𝑟−1 is a con-
tinuous function in 𝑟 (since these are relative moments of a truncated distribution).
This in turn implies that 𝑓𝑛(𝑟) is continuous in 𝑟. To ensure that the solution set is
non-empty, first note that

𝑓𝑛(1) =
log (𝑛) + 1

log (𝜆𝑛/𝔼[𝑊̃])
+ 1 ≥ 1,

and

𝑓𝑛(𝑛) =
log(𝑐𝑛,𝑛−1) + 1
log (𝜆𝑛/𝔼[𝑊̃])

+ 1 ≤ (𝑛 − 1)
log ( 𝜆𝑛

1+𝛿/𝔼[𝑊̃])

log (𝜆𝑛/𝔼[𝑊̃])
+ 1 ≤ 𝑛.

Hence, there exists at least one value 𝑟 ∈ [1, 𝑛] satisfying 𝑟 = 𝑓𝑛(𝑟). To show the
uniqueness of this solution we simply show that the slope of 𝑓𝑛(𝑟) is strictly smaller
than 1. Note that

𝜕
𝜕𝑟𝑓𝑛(𝑟) =

(𝑐′𝑛,𝑟−1/𝑐𝑛,𝑟−1) − (1/𝑟)
log (𝜆𝑛/𝔼[𝑊̃])

=
(𝔼[log (𝑊̃/𝔼[𝑊̃]) 𝑊̃ 𝑟−1]/𝔼[𝑊̃ 𝑟−1]) − (1/𝑟)

log (𝜆𝑛/𝔼[𝑊̃])

≤
log ( 𝜆𝑛

1+𝛿/𝔼[𝑊̃]) − (1/𝑟)

log (𝜆𝑛/𝔼[𝑊̃])
< 1, (2.18)

where 𝑐′𝑛,𝑟−1 denotes the partial derivative of 𝑐𝑛,𝑟−1with respect to 𝑟. Since the partial
derivative of 𝑓𝑛(𝑟) is strictly less than 1, there can be at most a single solution of
𝑟 = 𝑓𝑛(𝑟). Hence, the typical clique number is well defined.

2.5.2 Proof of Lemma 2.2: Alternative characterization of the typical clique
number

Here we derive an alternative representation for the typical clique number 𝜔𝑛, as
formulated in Lemma 2.2. This is sometimes more convenient than the original in
Definition 2.2.

By Lemma 2.1 we know that the typical clique number 𝜔𝑛 exists. Therefore, we can
solve (2.6) to see that the typical clique number is also the solution of

𝑟 =
𝒲0 (𝑛𝑐𝑛,𝑟−1e𝑏 log(𝑏))

log(𝑏)
,

where 𝑏 = 𝜆𝑛/𝔼[𝑊̃] and𝒲0(⋅) denotes the principal branch of the Lambert-W func-
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tion, see (2.39). Using the approximation𝒲0(𝑥) = log(𝑥)−log log(𝑥)+𝑜(1) as𝑥 → ∞,
as shown in [56], we obtain

𝑟 = log𝑏(𝑛𝑐𝑛,𝑟−1e𝑏 log(𝑏)) − log𝑏 log(𝑛𝑐𝑛,𝑟−1e𝑏 log(𝑏)) + 𝑜(1)

= log𝑏(𝑛𝑐𝑛,𝑟−1) − log𝑏 log𝑏(𝑛𝑐𝑛,𝑟−1) + log𝑏(e) + 1 + 𝑜(1).

2.5.3 Proof of Lemma 2.3: Bounded typical clique number

Here we show that the scaling 𝜆𝑛 is a positive power of 𝑛 if, and only if, the typical
clique number𝜔𝑛 converges to a constant. To this end, we first derive a small lemma:

Lemma 2.4. Let 𝛼 ∈ (0, 1). If the scaling satisfies 𝜆𝑛 ≥ 𝑛𝛼+𝑜(1) then

log(𝑐𝑛,1/𝛼+𝑜(1))
log(𝜆𝑛/𝔼[𝑊̃])

= 𝑜(1).

Proof. By Assumption 2.1,

ℙ (max
𝑖∈𝑉

𝑊𝑖 ≤ 𝜆𝑛) = (1 − ℙ (𝑊 > 𝜆𝑛))
𝑛 → 1.

Let 𝜀 > 0 be arbitrary, then for 𝑛 large enough and using the above we obtain

ℙ (𝑊 1/𝛼−𝜀 > 𝑛) ≤ ℙ (𝑊 1/(𝛼+𝑜(1)) > 𝑛) = ℙ (𝑊 > 𝜆𝑛) = 𝑜 ( 1𝑛) .

Therefore, using the tail formula for expectation,

𝔼 [𝑊̃ 1/𝛼−𝜀] ≤ (1 + 𝑜(1))𝔼 [𝑊 1/𝛼−𝜀𝟙{𝑊1/𝛼+𝑜(1)≤𝑛}]
≤ (1 + 𝑜(1))𝔼 [𝑊 1/𝛼−𝜀𝟙{𝑊1/𝛼−𝜀≤𝑛}]

= (1 + 𝑜(1))∫
∞

0
ℙ (𝑊 1/𝛼−𝜀𝟙{𝑊1/𝛼−𝜀≤𝑛} > 𝑥) d𝑥,

where 𝟙{⋅} denotes the usual indicator function. Note that 𝑊 1/𝛼𝑛 𝟙{𝑊1/𝛼𝑛≤𝑛} ≤ 𝑛, so
we can change the upper integration limit. This gives

𝔼 [𝑊̃ 1/𝛼−𝜀] ≤ 𝑂(1) + (1 + 𝑜(1))∫
𝑛

1
ℙ (𝑊 1/𝛼−𝜀 > 𝑥) d𝑥

≤ 𝑂(1) + (1 + 𝑜(1))∫
𝑛

1

1
𝑥 d𝑥 = 𝑂(1) + (1 + 𝑜(1)) log (𝑛) .
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Based on the above we conclude

log(𝑐𝑛,1/𝛼+𝑜(1))
log(𝜆𝑛/𝔼[𝑊̃])

= (1 + 𝑜(1))
log(𝔼[𝑊̃ 1/𝛼+𝑜(1)])

log(𝜆𝑛)

≤ (1 + 𝑜(1))
log(𝔼[𝑊̃ 1/𝛼−𝜀] 𝜆2𝜀𝑛 )

log(𝜆𝑛)

= (1 + 𝑜(1))
log log(𝑛)
log(𝑛𝛼+𝑜(1))

+ 2𝜀 + 𝑜(1) = 2𝜀 + 𝑜(1).

Since 𝜀 > 0 can be taken arbitrarily small, this completes the proof.

We are now ready to prove Lemma 2.3. The main idea is that, as 𝑛 → ∞, most
terms of (2.6) become negligible and the remaining terms no longer involve 𝑛.

Proof of Lemma 2.3. First suppose that 𝜆𝑛 = 𝑛𝛼+𝑜(1) with 𝛼 ∈ (0, 1). By Defini-
tion 2.2 the typical clique number 𝜔𝑛 satisfies

𝜔𝑛 =
log(𝑛) − log(𝜔𝑛) + log(𝑐𝑛,𝜔𝑛−1) + 1

log(𝜆𝑛/𝔼[𝑊̃])
+ 1. (2.19)

Plugging 𝜔𝑛 = 1 + 1/𝛼 + 𝑜(1) into (2.19) and using Lemma 2.4,

𝜔𝑛 =
log(𝑛) + log(𝑐𝑛,1/𝛼+𝑜(1))

log(𝜆𝑛/𝔼[𝑊̃])
+ 1

=
log(𝑛)

log(𝑛𝛼+𝑜(1)/𝔼[𝑊̃])
+ 1 + 𝑜(1)

= 1
𝛼 + 1 + 𝑜(1).

Hence (2.19) is satisfied for 𝜔𝑛 = 1 + 1/𝛼 + 𝑜(1) and by Lemma 2.1 this must be the
unique solution.

For the other direction, suppose that 𝜔𝑛 = 1 + 1/𝛼 + 𝑜(1) with 𝛼 ∈ (0, 1). Then,
by Definition 2.2 and Lemma 2.4,

𝜔𝑛 − 1 =
log(𝑛) − log(𝜔𝑛) + log(𝑐𝑛,𝜔𝑛−1) + 1

log (𝜆𝑛/𝔼[𝑊̃])

=
log(𝑛)

log (𝜆𝑛/𝔼[𝑊̃])
+ 𝑜(1).

Solving for 𝜆𝑛 we see that 𝜆𝑛 = 𝑛𝛼+𝑜(1) since 𝔼[𝑊̃] is uniformly bounded.
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2.5.4 Proof of Theorem 2.1: Concentration of the clique number

In this section we prove Theorem 2.1, our main result. First we derive some useful
results characterizing the relative moments. Then the proof itself is split into two
parts: the high-probability upper bound on the clique number in Sections 2.5.4.2 and
2.5.4.3 using the first moment method, and the high-probability lower bound on the
clique number in Sections 2.5.4.4 and 2.5.4.5, using the second moment method. In
both parts we separately consider two cases: 𝜔𝑛 → ∞ and 𝜔𝑛 is bounded. In fact, a
third might be possible, namely lim inf𝑛→∞ 𝜔𝑛 < lim sup𝑛→∞ 𝜔𝑛 = ∞. However, in
that case we can apply the reasoning below to a maximal subsequence of 𝜔𝑛 conver-
ging to infinity, and control the remaining terms by the argument used when 𝜔𝑛 is
bounded.

2.5.4.1 Auxiliary results

Binomial coefficients play an important role in counting the number of cliques.
Therefore, it is crucial to have tight bounds on the binomial coefficient, provided by
the lemma below. This lemma and the corresponding proof can be found in [155]:

Lemma 2.5. Suppose that 𝑟 = 𝑜(√𝑛), then the binomial coefficient can be approxim-
ated by

(
𝑛
𝑟
) = (1 + 𝑜(1)) 1

√2𝜋𝑟
(𝑛e𝑟 )

𝑟
.

Another important ingredient for the proof of Theorem 2.1 is to have sharp
bounds on the relative moments from Definition 2.1, which are provided by the fol-
lowing lemma. By definition, the typical clique number 𝜔𝑛 is the solution to (2.6).
If we consider the right-hand side and left-hand side of (2.6) separately, then we
see that these two functions must intersect at 𝜔𝑛. Moreover, the right-hand side of
(2.6) will always grow more slowly than the left-hand side, as shown in the proof of
Lemma 2.1. This means that there exists a straight line in between these two func-
tions, intersecting at 𝜔𝑛 as illustrated in Figure 2.1. Using this line we can then find
bounds on the right-hand side of (2.6) which in turn lead to bounds on the relative
moments.

Lemma 2.6. Under Assumption 2.1, the relative moments 𝑐𝑛,𝑟−1 from Definition 2.1
can be bounded by

𝑐𝑛,𝑟−1 ≥ (
𝜆𝑛

𝔼[𝑊̃]
)
𝛽𝑛((𝑟−1)−(𝜔𝑛−1))+(𝜔𝑛−1) 𝑟

𝑛e , for all 1 ≤ 𝑟 ≤ 𝜔𝑛,

𝑐𝑛,𝑟−1 ≤ (
𝜆𝑛

𝔼[𝑊̃]
)
𝛽𝑛((𝑟−1)−(𝜔𝑛−1))+(𝜔𝑛−1) 𝑟

𝑛e , for all 𝜔𝑛 ≤ 𝑟 ≤ 𝑛,



2.5. Proofs 31

with 𝛽𝑛 given by

𝛽𝑛 =
log ( 𝜆𝑛

1+𝛿/𝔼[𝑊̃])

log (𝜆𝑛/𝔼[𝑊̃])
< 1, (2.20)

and where 𝛿 > 0 arises from Assumption 2.1.

Proof. Let 𝑓𝑛(𝑟) be as defined in (2.17), then the typical clique number 𝜔𝑛 is the solu-
tion in 𝑟 of 𝑟 = 𝑓𝑛(𝑟). Consider 𝑔𝑛(𝑟) = 𝛽𝑛(𝑟−𝜔𝑛) +𝜔𝑛, which is the line through 𝜔𝑛
with slope 𝛽𝑛, as shown in Figure 2.1. We will show that, for all 𝑛, the line 𝑔𝑛(𝑟)
is a lower bound on 𝑓𝑛(𝑟) when 𝑟 ∈ [1, 𝜔𝑛], and an upper bound on 𝑓𝑛(𝑟) when
𝑟 ∈ [𝜔𝑛, 𝑛].

The slope of 𝑓𝑛(𝑟) was derived in (2.18) and is bounded by 𝛽𝑛 given in (2.20).
Hence, we have 𝑔𝑛(𝑟) ≤ 𝑓𝑛(𝑟) when 𝑟 ∈ [1, 𝜔𝑛] and 𝑔𝑛(𝑟) ≥ 𝑓𝑛(𝑟) otherwise.

To finish the proof note that, for all 𝑟 ∈ [1, 𝜔𝑛],

𝛽𝑛((𝑟 − 1) − (𝜔𝑛 − 1)) + 𝜔𝑛 = 𝑔𝑛(𝑟)

≤ 𝑓𝑛(𝑟) =
log(𝑛) − log(𝑟) + log(𝑐𝑛,𝑟−1) + 1

log(𝜆𝑛/𝔼[𝑊̃])
+ 1.

Exponentiating both sides yields

(
𝜆𝑛

𝔼[𝑊̃]
)
𝛽𝑛((𝑟−1)−(𝜔𝑛−1))+(𝜔𝑛−1)

≤
𝑛𝑐𝑛,𝑟−1e

𝑟 .

Multiplying both sides by 𝑟/(𝑛𝑒) gives the first result. The second result follows sim-
ilarly.

25 50 75 100
0

25

50

75

100

𝜔𝑛

𝑟
𝑓𝑛(𝑟)
𝑔𝑛(𝑟)

Figure 2.1: Example of the line 𝑔𝑛(𝑟) with slope 𝛽𝑛 through 𝜔𝑛 (solid line). Note that this line
is a lower bound on 𝑓𝑛(𝑟) for all 𝑟 ∈ [1, 𝜔𝑛], and an upper bound on 𝑓𝑛(𝑟) for all 𝑟 ∈ [𝜔𝑛, 𝑛].
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2.5.4.2 Upper bound with diverging typical clique number

In this section we prove the upper bound of Theorem 2.1 assuming that 𝜔𝑛 → ∞.
Define the event

𝒯𝑛,𝛿 = {max
𝑖∈𝑉

𝑊𝑖 ≤
𝜆𝑛
1 + 𝛿} . (2.21)

Assumption 2.1 enforces that ℙ(𝒯𝑛,𝛿) → 1 as 𝑛 → ∞. A trivial, but crucial, observa-
tion is that the joint distribution of the weights (𝑊1, … ,𝑊𝑛) conditional on the event
𝒯𝑛,𝛿 is the same as that of a sequence of i.i.d. truncated weights (𝑊̃1, … , 𝑊̃𝑛). In other
words

(𝑊1, … ,𝑊𝑛) | 𝒯𝑛,𝛿
𝑑
= (𝑊̃1, … , 𝑊̃𝑛), (2.22)

where 𝑊̃𝑖 are i.i.d. random variables with the same distribution as 𝑊̃. This statement
can be checked by an elementary computation.

Let 𝜔(𝐺𝑛) be the clique number of the graph 𝐺𝑛 and define 𝑁𝑟 to be the number
of cliques of size 𝑟 in 𝐺𝑛. Then, by Assumption 2.1 and the first moment method,

ℙ(𝜔(𝐺𝑛) ≥ 𝑟) = (1 + 𝑜(1))ℙ(𝜔(𝐺𝑛) ≥ 𝑟 |𝒯𝑛,𝛿)

= (1 + 𝑜(1))ℙ(𝑁𝑟 ≥ 1 |𝒯𝑛,𝛿)

≤ (1 + 𝑜(1))𝔼[𝑁𝑟 | 𝒯𝑛,𝛿]. (2.23)

Then by linearity of expectation,

𝔼[𝑁𝑟 | 𝒯𝑛,𝛿] = ∑
𝐶⊆𝑉, |𝐶|=𝑟

ℙ(𝐶 is a clique in 𝐺𝑛 | 𝒯𝑛,𝛿)

= ∑
𝐶⊆𝑉, |𝐶|=𝑟

𝔼 [ ∏
𝑖<𝑗∈𝐶

𝑊𝑖
𝜆𝑛

⋅
𝑊𝑗

𝜆𝑛
∧ 1

||||
𝒯𝑛,𝛿]

= ∑
𝐶⊆𝑉, |𝐶|=𝑟

𝔼 [ ∏
𝑖<𝑗∈𝐶

𝑊̃𝑖
𝜆𝑛

⋅
𝑊̃𝑗

𝜆𝑛
]

= (
𝑛
𝑟
)𝔼 [( 𝑊̃𝜆𝑛

)
𝑟−1

]
𝑟

(2.24)

= (
𝑛
𝑟
) (𝑐𝑛,𝑟−1 (

𝔼[𝑊̃]
𝜆𝑛

)
𝑟−1

)
𝑟

.

To prove the upper bound of Theorem 2.1, we need show that 𝔼[𝑁𝑟 | 𝒯𝑛,𝛿] → 0, as
𝑛 → ∞, when 𝑟 > ⌊𝜔𝑛 + 𝜀⌋, and since 𝑟 is integer this implies 𝑟 ≥ 𝜔𝑛 + 𝜀. Using
Lemmas 2.5 and 2.6 we can further bound the above expression as

𝔼[𝑁𝑟 | 𝒯𝑛,𝛿] ≤ (1 + 𝑜(1)) 1
√2𝜋𝑟

(𝑛e𝑟 )
𝑟
(𝑐𝑛,𝑟−1 (

𝔼[𝑊̃]
𝜆𝑛

)
𝑟−1

)
𝑟
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≤ (1 + 𝑜(1)) 1
√2𝜋𝑟

(𝔼[𝑊̃]
𝜆𝑛

)
𝑟(𝑟−1)−𝑟(𝛽𝑛((𝑟−1)−(𝜔𝑛−1))+(𝜔𝑛−1))

= (1 + 𝑜(1)) 1
√2𝜋𝑟

(𝔼[𝑊̃]
𝜆𝑛

)
−(1−𝛽𝑛)⋅𝑟((𝜔𝑛−1)−(𝑟−1))

, (2.25)

where 𝛽𝑛 comes from Lemma 2.6. Using the definition of 𝛽𝑛 we have

(
𝜆𝑛

𝔼[𝑊̃]
)
−(1−𝛽𝑛)

= (𝔼[𝑊̃]
𝜆𝑛

) (
𝜆𝑛/(1 + 𝛿)

𝔼[𝑊̃]
) = 1

1 + 𝛿. (2.26)

Combining (2.25) and (2.26) and because 𝑟 − 𝜔𝑛 ≥ 𝜀 we obtain

𝔼[𝑁𝑟 | 𝒯𝑛,𝛿] = (1 + 𝑜(1)) 1
√2𝜋𝑟

( 1
1 + 𝛿)

−𝑟(𝜔𝑛−𝑟)

≤ (1 + 𝑜(1)) 1
√2𝜋𝑟

( 1
1 + 𝛿)

𝑟𝜀
. (2.27)

Since𝜔𝑛 →∞ it is easily seen from (2.27) that𝔼[𝑁𝑟 | 𝒯𝑛,𝛿] → 0when 𝑟 > ⌊𝜔𝑛+𝜀⌋.
Hence it follows from (2.23) that ℙ(𝜔(𝐺𝑛) > ⌊𝜔𝑛 + 𝜀⌋) → 0.

2.5.4.3 Upper bound with bounded typical clique number

Here we prove the upper bound of Theorem 2.1 assuming that 𝜔𝑛 is bounded. First
we consider the case where 𝜔𝑛 converges, in this case there exists an 𝛼 > 0 such that
𝜔𝑛 = 1/𝛼 + 1 + 𝑜(1). We want to apply all the steps in Section 2.5.4.2, but instead of
conditioning on the event in (2.21) we will condition on the event

𝒯𝑛,𝜂 = {max
𝑖∈𝑉

𝑊𝑖 ≤
𝜆𝑛
1 + 𝜂} , (2.28)

where 𝜂 > 0 comes from Assumption 2.2.
Since 𝜔𝑛 = 1/𝛼 + 1 + 𝑜(1) it follows from Lemma 2.3 that 𝜆𝑛 = 𝑛𝛼+𝑜(1), and by

Assumption 2.2 we have ℙ(𝒯𝑛,𝜂) → 1. Moreover, by repeating the steps in Lemmas
2.3 and 2.4 it can easily be checked that replacing 𝛿 by 𝜂 in Definitions 2.1 and 2.2
the typical clique number remains equal to 𝜔𝑛 = 1/𝛼 + 1 + 𝑜(1). Therefore, we can
follow all steps in Section 2.5.4.2 but conditioning on 𝒯𝑛,𝜂 instead of 𝒯𝑛,𝛿. This gives

ℙ(𝜔(𝐺𝑛) ≥ 𝑟) = (1 + 𝑜(1))ℙ(𝜔(𝐺𝑛) ≥ 𝑟 |𝒯𝑛,𝜂)

≤ (1 + 𝑜(1))𝔼[𝑁𝑟 | 𝒯𝑛,𝜂]

≤ (1 + 𝑜(1)) 1
√2𝜋𝑟

( 1
1 + 𝜂)

𝑟𝜀
. (2.29)
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Since 𝜂 > 0 is arbitrary and 𝑟 = 𝜔𝑛 + 𝜀 is bounded it follows from (2.29) that we can
make ℙ(𝜔(𝐺𝑛) ≥ 𝑟) arbitrarily small, hence ℙ(𝜔(𝐺𝑛) ≥ 𝑟) → 0.

To complete the proof we consider the case when 𝜔𝑛 does not converge. In this
case, we know that every subsequence (𝑛𝑖)𝑖∈ℕ contains a further subsequence (𝑛𝑖𝑗)𝑗∈ℕ
along which 𝜔𝑛𝑖𝑗 converges. Applying the arguments above shows that every sub-
sequence (𝑛𝑖)𝑖∈ℕ has a further subsequence (𝑛𝑖𝑗)𝑗∈ℕ alongwhichℙ(𝜔(𝐺𝑛𝑖𝑗) ≥ 𝑟) → 0,
and it follows that ℙ(𝜔(𝐺𝑛) ≥ 𝑟) → 0.

2.5.4.4 Lower bound with diverging typical clique number

In this section we prove the lower bound of Theorem 2.1 assuming that 𝜔𝑛 → ∞.
Recall that 𝜔(𝐺𝑛) denotes the clique number of the graph𝐺𝑛 and𝑁𝑟 is the number of
cliques of size 𝑟 in𝐺𝑛. Then, by the secondmomentmethod, and using the truncation
event 𝒯𝑛,𝛿 given by (2.21) together with Assumption 2.1,

ℙ(𝜔(𝐺𝑛) < 𝑟) = (1 + 𝑜(1))ℙ(𝜔(𝐺𝑛) < 𝑟 |𝒯𝑛,𝛿)

= (1 + 𝑜(1))ℙ(𝑁𝑟 = 0 |𝒯𝑛,𝛿)

≤ (1 + 𝑜(1))
Var(𝑁𝑟 | 𝒯𝑛,𝛿)
𝔼[𝑁𝑟 | 𝒯𝑛,𝛿]2

= (1 + 𝑜(1)) (
𝔼[𝑁2

𝑟 | 𝒯𝑛,𝛿]
𝔼[𝑁𝑟 | 𝒯𝑛,𝛿]2

− 1) . (2.30)

Hence we need to show that 𝔼[𝑁2
𝑟 | 𝒯𝑛,𝛿]/𝔼[𝑁𝑟 | 𝒯𝑛,𝛿]2 → 1 as 𝑛 → ∞, with 𝑟 =

⌊𝜔𝑛 − 𝜀⌋. The first moment of the number of cliques 𝑁𝑟 was computed in (2.24), and
is given by

𝔼[𝑁𝑟 | 𝒯𝑛,𝛿] = (
𝑛
𝑟
)𝔼 [( 𝑊̃𝜆𝑛

)
𝑟−1

]
𝑟

. (2.31)

Similarly, the second moment of the number of cliques 𝑁𝑟 is also found using (2.22)
and linearity of expectation as

𝔼[𝑁2
𝑟 | 𝒯𝑛,𝛿] = ∑

|𝐶1|=𝑟, |𝐶2|=𝑟
ℙ(𝐶1 and 𝐶2 are both cliques in 𝐺𝑛 | 𝒯𝑛,𝛿)

= ∑
|𝐶1|=𝑟, |𝐶2|=𝑟

𝔼
⎡
⎢
⎢
⎣

∏𝑖<𝑗∈𝐶1

𝑊𝑖

𝜆𝑛
⋅ 𝑊𝑗

𝜆𝑛
∏𝑖<𝑗∈𝐶2

𝑊𝑖

𝜆𝑛
⋅ 𝑊𝑗

𝜆𝑛

∏𝑖<𝑗∈𝐶1∩𝐶2

𝑊𝑖
𝜆𝑛

⋅ 𝑊𝑗

𝜆𝑛

⎤
⎥
⎥
⎦

=
𝑟
∑
𝑘=0

∑
|𝐶1|=𝑟, |𝐶2|=𝑟,
|𝐶1∩𝐶2|=𝑘

𝔼 [( 𝑊̃𝜆𝑛
)
𝑟−1

]
2(𝑟−𝑘)

𝔼 [( 𝑊̃𝜆𝑛
)
2(𝑟−1)−(𝑘−1)

]
𝑘

(2.32)

=
𝑟
∑
𝑘=0

(
𝑛
𝑟
)(
𝑟
𝑘
)(
𝑛 − 𝑟
𝑟 − 𝑘

)𝔼 [( 𝑊̃𝜆𝑛
)
𝑟−1

]
2(𝑟−𝑘)

𝔼 [( 𝑊̃𝜆𝑛
)
2(𝑟−1)−(𝑘−1)

]
𝑘

. (2.33)
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𝐶1 𝐶2

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝐶1⧵𝐶2 𝐶1∩𝐶2 𝐶2⧵𝐶1

(a) Example of all the edges connecting to a ver-
tex in 𝐶1 ⧵ 𝐶2.

𝐶1 𝐶2

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝐶1⧵𝐶2 𝐶1∩𝐶2 𝐶2⧵𝐶1

(b) Example of all the edges connecting to a ver-
tex in 𝐶1 ∩ 𝐶2.

Figure 2.2: Example of edges connecting to vertices in different parts of 𝐶1 ∪ 𝐶2.

The equality in (2.33) comes from counting how many times each vertex is an
endpoint of an edge, and thus howmany times each weight is present in the product.
We count two cases separately:

⚫ Vertices in 𝐶1 ⧵ 𝐶2 will need edges to each other vertex in 𝐶1. So, each vertex
in 𝐶1 ⧵ 𝐶2 will be 𝑟 − 1 times in the product of (2.32) and similarly for vertices
in 𝐶2 ⧵ 𝐶1. Since we have 2(𝑟 − 𝑘) vertices in 𝐶1 ⧵ 𝐶2 and 𝐶2 ⧵ 𝐶1 we get the
𝔼[𝑊 𝑟−1]2(𝑟−𝑘) term. See Figure 2.2(a).

⚫ Vertices in 𝐶1 ∩ 𝐶2 will need edges to each vertex in 𝐶1 ∪ 𝐶2. So, each vertex in
𝐶1 ∩ 𝐶2 will be 2(𝑟 − 1) − (𝑘 − 1) times in the product of (2.32) and we have 𝑘
vertices in 𝐶1 ∩ 𝐶2. So we get the 𝔼[𝑊 2(𝑟−1)−(𝑘−1)]𝑘 term. See Figure 2.2(b).

Combining (2.31) and (2.33) we obtain

𝔼 [𝑁2
𝑟 | 𝒯𝑛,𝛿]

𝔼[𝑁𝑟 | 𝒯𝑛,𝛿]2
=

𝑟
∑
𝑘=0

(𝑟𝑘)(
𝑛−𝑟
𝑟−𝑘)

(𝑛𝑟)
⋅

𝔼 [(𝑊
𝜆𝑛
)
𝑟−1

]
2(𝑟−𝑘)

𝔼 [(𝑊
𝜆𝑛
)
2(𝑟−1)−(𝑘−1)

]
𝑘

𝔼 [(𝑊
𝜆𝑛
)
𝑟−1

]
2𝑟

=
𝑟
∑
𝑘=0

(𝑟𝑘)(
𝑛−𝑟
𝑟−𝑘)

(𝑛𝑟)
(
𝑐𝑛,2(𝑟−1)−(𝑘−1)

𝑐2𝑛,𝑟−1
)
𝑘

(𝔼[𝑊̃]
𝜆𝑛

)
−𝑘(𝑘−1)

≤ 1 +
𝑟
∑
𝑘=1

(𝑟𝑘)(
𝑛−𝑟
𝑟−𝑘)

(𝑛𝑟)
(
𝑐𝑛,2(𝑟−1)−(𝑘−1)

𝑐2𝑛,𝑟−1
)
𝑘

(𝔼[𝑊̃]
𝜆𝑛

)
−𝑘(𝑘−1)

≤ 1 + max
1≤𝑘≤𝑟

𝑟
(𝑟𝑘)(

𝑛−𝑟
𝑟−𝑘)

(𝑛𝑟)
(
𝑐𝑛,2(𝑟−1)−(𝑘−1)

𝑐2𝑛,𝑟−1
)
𝑘

(𝔼[𝑊̃]
𝜆𝑛

)
−𝑘(𝑘−1)

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
≔ 𝑏𝑛,𝑟𝑘

. (2.34)

We will show that max𝑘∈[𝑟] 𝑏
𝑛,𝑟
𝑘 → 0 as 𝑛 → ∞. To continue we consider two cases:

(i) 𝑘 = 𝑟; and (ii) 1 ≤ 𝑘 ≤ 𝑟 − 1.
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Case (i): Here 𝑘 = 𝑟, so we want to show that 𝑏𝑛,𝑟𝑟 → 0 as 𝑛 → ∞. By definition of
𝑏𝑛,𝑟𝑟 and by Lemmas 2.5 and 2.6,

𝑏𝑛,𝑟𝑟 = 𝑟 1
(𝑛𝑟)

( 1
𝑐𝑛,𝑟−1

)
𝑟

(
𝜆𝑛

𝔼[𝑊̃]
)
𝑟(𝑟−1)

≤ (1 + 𝑜(1))𝑟√2𝜋𝑟 ( 𝑟𝑛e)
𝑟
( 1
𝑐𝑛,𝑟−1

)
𝑟

(
𝜆𝑛

𝔼[𝑊̃]
)
𝑟(𝑟−1)

≤ (1 + 𝑜(1))𝑟√2𝜋𝑟 (
𝜆𝑛

𝔼[𝑊̃]
)
𝑟((𝑟−1)−𝛽𝑛((𝑟−1)−(𝜔𝑛−1))−(𝜔𝑛−1))

= (1 + 𝑜(1))𝑟√2𝜋𝑟 (
𝜆𝑛

𝔼[𝑊̃]
)
−(1−𝛽𝑛)𝑟((𝜔𝑛−1)−(𝑟−1))

.

where 𝛽𝑛 is given in Lemma 2.6.
Using (2.26) together with the fact that 𝑟 = ⌊𝜔𝑛 − 𝜀⌋ ≤ 𝜔𝑛 − 𝜀 yields the bound

𝑏𝑛,𝑟𝑟 ≤ (1 + 𝑜(1))𝑟√2𝜋𝑟 (
𝜆𝑛

𝔼[𝑊̃]
)
−(1−𝛽)𝑟((𝜔𝑛−1)−(𝑟−1))

≤ (1 + 𝑜(1))𝑟√2𝜋𝑟 ( 1
1 + 𝛿)

𝜀𝑟
. (2.35)

Since 𝜔𝑛 →∞ it is easily seen from (2.35) that 𝑏𝑛,𝑟𝑟 → 0.

Case (ii): Here we must show that max𝑘∈[𝑟−1] 𝑏
𝑛,𝑟
𝑘 → 0 as 𝑛 → ∞. First we apply

Lemma 2.5 on the binomial coefficients, which gives

(𝑟𝑘)(
𝑛−𝑟
𝑟−𝑘)

(𝑛𝑟)
= (1 + 𝑜(1))

√
𝑟

2𝜋𝑘(𝑟 − 𝑘) (
𝑟e
𝑘 )

𝑘
((𝑛 − 𝑟)e
𝑟 − 𝑘 )

𝑟−𝑘
(𝑛e𝑟 )

−𝑟

= (1 + 𝑜(1))
√

𝑟
2𝜋𝑘(𝑟 − 𝑘) (

𝑟e
𝑘 )

𝑘
(𝑛 − 𝑟

𝑛
𝑟

𝑟 − 𝑘)
𝑟
( 𝑟 − 𝑘
(𝑛 − 𝑟)e)

𝑘

= (1 + 𝑜(1))
√

𝑟
2𝜋𝑘(𝑟 − 𝑘) (

𝑟e
𝑘 )

𝑘
( 𝑟 − 𝑘
𝑛 − 𝑟)

𝑘
. (2.36)

Now, for all 1 ≤ 𝑘 ≤ 𝑟 − 1 we have that 𝑘 ≤ 𝜔𝑛 − 𝜀 − 1 ≤ 𝜔𝑛 − 2𝜀 and therefore
2(𝑟 − 1) − (𝑘 − 1) ≥ 𝜔𝑛 − 1. So, we can apply Lemma 2.6 on both 𝑐𝑛,2(𝑟−1)−(𝑘−1) and
on 𝑐𝑛,𝑟−1, yielding

(
𝑐𝑛,2(𝑟−1)−(𝑘−1)

𝑐2𝑛,𝑟−1
)
𝑘

(
𝜆𝑛

𝔼[𝑊̃]
)
𝑘(𝑘−1)

≤ (2(𝑟 − 1) − (𝑘 − 1) + 1
𝑛e )

𝑘
(𝑛e𝑟 )

2𝑘
(

𝜆𝑛
𝔼[𝑊̃]

)
𝑘(𝑘−1)



2.5. Proofs 37

× (
𝜆𝑛

𝔼[𝑊̃]
)
𝑘(𝛽𝑛(2(𝑟−1)−(𝑘−1)−(𝜔𝑛−1))+(𝜔𝑛−1))

× (
𝜆𝑛

𝔼[𝑊̃]
)
−2𝑘(𝛽𝑛((𝑟−1)−(𝜔𝑛−1))+(𝜔𝑛−1))

= (2(𝑟 − 1) − (𝑘 − 1) + 1
𝑟2 𝑛e)

𝑘
(

𝜆𝑛
𝔼[𝑊̃]

)
−(1−𝛽𝑛)⋅𝑘((𝜔𝑛−1)−(𝑘−1))

.(2.37)

Combining (2.36) and (2.37) we obtain

𝑏𝑛,𝑟𝑘 ≤ (1 + 𝑜(1))𝑟
√

𝑟
2𝜋𝑘(𝑟 − 𝑘) (

𝑟 − 𝑘
𝑘

2(𝑟 − 1) − (𝑘 − 1) + 1
𝑟 e2)

𝑘

× (
𝜆𝑛

𝔼[𝑊̃]
)
−(1−𝛽𝑛)⋅𝑘((𝜔𝑛−1)−(𝑘−1))

≤ (1 + 𝑜(1))𝑟
√

𝑟
2𝜋𝑘(𝑟 − 𝑘) (

𝑟 − 𝑘
𝑘 2e2)

𝑘
(

𝜆𝑛
𝔼[𝑊̃]

)
−(1−𝛽𝑛)⋅𝑘((𝜔𝑛−1)−(𝑘−1))

.

Here we can use (2.26) again. This gives

𝑏𝑛,𝑟𝑘 ≤ (1 + 𝑜(1))𝑟
√

𝑟
2𝜋𝑘(𝑟 − 𝑘) (

𝑟 − 𝑘
𝑘 2e2)

𝑘
(

𝜆𝑛
𝔼[𝑊̃]

)
−(1−𝛽𝑛)⋅𝑘((𝜔𝑛−1)−(𝑘−1))

≤ (1 + 𝑜(1))𝑟
√

𝑟
2𝜋𝑘(𝑟 − 𝑘) (

𝑟 − 𝑘
𝑘 2e2)

𝑘
( 1
1 + 𝛿)

𝑘((𝜔𝑛−1)−(𝑘−1))

= (1 + 𝑜(1))𝑟
√

𝑟
2𝜋𝑘(𝑟 − 𝑘) (

2e2 ( 𝑟𝑘 − 1) ( 1
1 + 𝛿)

𝜔𝑛−𝑘
)
𝑘

. (2.38)

Fix 𝜁 ∈ (0, (1 + 2e2)−1) and recall that 𝜔𝑛 → ∞. Then it can easily be seen from
(2.38) thatmax1≤𝑘≤(1−𝜁)𝑟 𝑏

𝑛,𝑟
𝑘 → 0 since (1+𝛿)−(𝜔𝑛−𝑘) → 0 exponentially, eventually

dominating the other terms. Finally, to show that max(1−𝜁)𝑟≤𝑘≤𝑟 𝑏
𝑛,𝑟
𝑘 → 0, note that

2e2(𝑟/𝑘−1) < 1 and therefore (2e2(𝑟/𝑘−1)(1+𝛿)−(𝜔𝑛−𝑘))𝑘 → 0 exponentially, again
dominating the remaining terms.

Hence max𝑘∈[𝑟] 𝑏
𝑛,𝑟
𝑘 → 0 as 𝑛 → ∞ and 𝑟 = ⌊𝜔𝑛 − 𝜀⌋. Using (2.34) and (2.30) it

follows that ℙ(𝜔(𝐺𝑛) < ⌊𝜔𝑛 − 𝜀⌋) → 0 as 𝑛 → ∞.

2.5.4.5 Lower bound with bounded typical clique number

Here we prove the lower bound of Theorem 2.1 assuming that 𝜔𝑛 is bounded. First
we consider the case where 𝜔𝑛 converges, in this case there exists an 𝛼 > 0 such that
𝜔𝑛 = 1/𝛼 + 1 + 𝑜(1). We want to apply all the steps in Section 2.5.4.4, but instead of
conditioning on the event𝒯𝑛,𝛿 given in (2.21)wewill condition on the event𝒯𝑛,𝜂 given
in (2.28). As shown in Section 2.5.4.3, the typical clique number 𝜔𝑛 is unaffected by
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this change, and by Assumption 2.2 we also have ℙ(𝒯𝑛,𝜂) → 1.
Now, following all steps in Section 2.5.4.2 but conditioning on𝒯𝑛,𝜂 instead of 𝒯𝑛,𝛿

we obtain

ℙ(𝜔(𝐺𝑛) < 𝑟) = (1 + 𝑜(1))ℙ(𝜔(𝐺𝑛) < 𝑟 |𝒯𝑛,𝜂) ≤ (1 + 𝑜(1))
𝔼[𝑁2

𝑟 | 𝒯𝑛,𝜂]
𝔼[𝑁𝑟 | 𝒯𝑛,𝜂]2

− 1.

By combining (2.35) and (2.38), and using that 𝑟 = 𝜔𝑛 − 𝜀 is bounded we get

ℙ(𝜔(𝐺𝑛) < 𝑟) ≤ (1 + 𝑜(1))
𝔼[𝑁2

𝑟 | 𝒯𝑛,𝜂]
𝔼[𝑁𝑟 | 𝒯𝑛,𝜂]2

− 1 ≤ 𝑂(1) ( 1
1 + 𝜂)

𝜀
.

Since we can make 𝜂 > 0 arbitrarily large it follows that ℙ(𝜔(𝐺𝑛) < 𝑟) → 0.
To complete the proof we consider the case when 𝜔𝑛 does not converge. In this

case, we know that every subsequence (𝑛𝑖)𝑖∈ℕ contains a further subsequence (𝑛𝑖𝑗)𝑗∈ℕ
along which 𝜔𝑛𝑖𝑗 converges. Applying the arguments above shows that every sub-
sequence (𝑛𝑖)𝑖∈ℕ has a further subsequence (𝑛𝑖𝑗)𝑗∈ℕ alongwhichℙ(𝜔(𝐺𝑛𝑖𝑗) < 𝑟) → 0,
and it follows that ℙ(𝜔(𝐺𝑛) < 𝑟) → 0.

2.6 Derivation of examples

In this section we derive the asymptotic behavior of the typical clique number 𝜔𝑛
for some given weight distributions𝑊 and scalings 𝜆𝑛. This can be very difficult in
general, but for several choices of weights good asymptotic characterizations can be
given. An overview of these results can be found in Tables 2.1, 2.2, and 2.3.

Throughout the derivation of the examples belowwemake use of the Lambert-W
functions, which are obtained from the solutions in 𝑦 ∈ ℝ of the equation

𝑥 = 𝑦e𝑦, (2.39)

When 𝑥 ≥ 0 this has a unique real solution, while for 𝑥 ∈ (−1/e, 0) there are two
real solutions. This gives rise to two branches: the principal branch, denoted by𝒲0 ∶
[−1/e,∞) ↦ [−1,∞) and the lower branch, denoted by𝒲−1 ∶ [−1/e, 0) ↦ (−∞,−1].
For an overview of this function and its properties see [56].

2.6.1 Bernoulli weights

Let𝑊 have a Bernoulli distribution with parameter 𝑝, that is𝑊 ∼ Ber(𝑝), and take
any scaling 𝜆𝑛 ≥ 𝑐 > 1. In this case, we have an Erdős–Rényi random graph with
connection probability 𝜆−2𝑛 on approximately 𝑛𝑝 vertices, with all remaining vertices
being isolated. Therefore, by (2.10), we expect the typical clique number 𝜔𝑛 to be

𝜔𝑛 = log𝜆𝑛(𝑛𝑝) − log𝜆𝑛 log𝜆𝑛(𝑛𝑝) + log𝜆𝑛(e) + 1 + 𝑜(1).
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In this section, we show that the same result is obtained by solving (2.6) from Defin-
ition 2.2.

The relative moments from Definition 2.1 are given by

𝑐𝑛,𝑟−1 =
𝔼[𝑊̃ 𝑟−1]
𝔼[𝑊̃]𝑟−1

=
𝔼[𝑊 𝑟−1]
𝔼[𝑊]𝑟−1

= 𝑝2−𝑟.

The typical clique number 𝜔𝑛 from Definition 2.2 is given by the solution in 𝑟 of

𝑟 =
log(𝑛) − log(𝑟) + (2 − 𝑟) log(𝑝) + 1

log(𝜆𝑛/𝑝)
+ 1.

Solving this we obtain

𝜔𝑛 =
𝒲0(𝑛𝑝e𝜆𝑛 log(𝜆𝑛))

log(𝜆𝑛)
.

where𝒲0 denotes the principal branch of the Lambert-W function, see (2.39). We can
simplify the solution above using the approximation𝒲0(𝑥) = log(𝑥)−log log(𝑥)+𝑜(1)
as 𝑥 → ∞ from [56]. This gives

𝜔𝑛 =
log(𝑛𝑝e𝜆𝑛 log(𝜆𝑛)) − log log(𝑛𝑝e𝜆𝑛 log(𝜆𝑛))

log(𝜆𝑛)
+ 𝑜(1)

=
log(𝑛𝑝e𝜆𝑛 log(𝜆𝑛)) − log log(𝑛𝑝)

log(𝜆𝑛)
+ 𝑜(1)

= log𝜆𝑛(𝑛𝑝 log(𝜆𝑛)) − log𝜆𝑛 log(𝑛𝑝) + log𝜆𝑛(e) + 1 + 𝑜(1)

= log𝜆𝑛(𝑛𝑝) − log𝜆𝑛 log𝜆𝑛(𝑛𝑝) + log𝜆𝑛(e) + 1 + 𝑜(1),

which is exactly the expected solution.

2.6.2 Beta weights

Let 𝑊 have a beta distribution with parameters 𝛼 > 0 and 𝛽 > 0, that is 𝑊 ∼
Beta(𝛼, 𝛽), and take any scaling 𝜆𝑛 ≥ 𝑐 > 1. Then the relative moments from Defini-
tion 2.1 are given by

𝑐𝑛,𝑟−1 =
𝔼[𝑊̃ 𝑟−1]
𝔼[𝑊̃]𝑟−1

=
𝔼[𝑊 𝑟−1]
𝔼[𝑊]𝑟−1

=
𝑟−2
∏
𝑟=0

𝛼 + 𝑟
𝛼 + 𝛽 + 𝑟/( 𝛼

𝛼 + 𝛽)
𝑟−1

= Γ(𝛼 + 𝑟 − 1)
Γ(𝛼 + 𝛽 + 𝑟 − 1)

⋅
Γ(𝛼 + 𝛽)
Γ(𝛼)

⋅ ( 𝛼
𝛼 + 𝛽)

𝑟−1
.

Using Stirling’s approximation, the above can be simplified for large 𝑟. This gives

log(𝑐𝑛,𝑟−1) = −𝛽 log(𝑟) + log(Γ(𝛼 + 𝛽)/Γ(𝛼)) + (𝑟 − 1) log ( 𝛼
𝛼 + 𝛽) + 𝑜(1).
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Therefore, the typical clique number 𝜔𝑛 from Definition 2.2 is given by the solution
in 𝑟 of

𝑟 =
log(𝑛) − (𝛽 + 1) log(𝑟) + (𝑟 − 1) log( 𝛼

𝛼+𝛽
) + log(Γ(𝛼 + 𝛽)/Γ(𝛼)) + 1

log(𝜆𝑛/(
𝛼

𝛼+𝛽
))

+1+𝑜(1).

Solving this we obtain

𝜔𝑛 =
(1 + 𝛽)𝒲0(

(𝑛e𝜆𝑛Γ(𝛼+𝛽)/Γ(𝛼))
1

1+𝛽 log(𝜆𝑛)

1+𝛽
)

log(𝜆𝑛)
+ 𝑜(1),

As in the previous example, using the approximation𝒲0(𝑥) = log(𝑥) − log log(𝑥) +
𝑜(1), we obtain

𝜔𝑛 =
(1 + 𝛽) log(

(𝑛e𝜆𝑛Γ(𝛼+𝛽)/Γ(𝛼))
1

1+𝛽 log(𝜆𝑛)

1+𝛽
)

log(𝜆𝑛)

−
(1 + 𝛽) log log(

(𝑛e𝜆𝑛Γ(𝛼+𝛽)/Γ(𝛼))
1

1+𝛽 log(𝜆𝑛)

1+𝛽
)

log(𝜆𝑛)
+ 𝑜(1)

=
log(𝑛e𝜆𝑛Γ(𝛼 + 𝛽)/Γ(𝛼)) + (1 + 𝛽) log( log(𝜆𝑛)

1+𝛽
) − (1 + 𝛽) log log(𝑛)

log(𝜆𝑛)
+ 𝑜(1)

= log𝜆𝑛(𝑛eΓ(𝛼 + 𝛽)/Γ(𝛼)) − (1 + 𝛽) log𝜆𝑛((1 + 𝛽) log𝜆𝑛(𝑛)) + 1 + 𝑜(1)

= log𝜆𝑛(𝑛) − (1 + 𝛽) log𝜆𝑛((1 + 𝛽) log𝜆𝑛(𝑛))

+ log𝜆𝑛(e) + log𝜆𝑛(Γ(𝛼 + 𝛽)/Γ(𝛼)) + 1 + 𝑜(1).

2.6.3 Gamma weights

Let𝑊 have a Gamma distribution with shape 𝛼 and rate 𝛽, that is𝑊 ∼ Gamma(𝛼, 𝛽).
First we assume that truncating the weight distribution has asymptotically almost no
effect on the relative moments from Definition 2.1. We begin by assuming that

𝑐𝑛,𝑟−1 =
𝔼[𝑊̃ 𝑟−1]
𝔼[𝑊̃]𝑟−1

= (1 + 𝑜(1))
𝔼[𝑊 𝑟−1]
𝔼[𝑊]𝑟−1

, (2.40)

for all 𝑟 ≤ 𝜔𝑛, and use this to find the typical clique number 𝜔𝑛. After that, we will
show that the assumption in (2.40) is valid.
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By the assumption in (2.40)

𝑐𝑛,𝑟−1 = (1 + 𝑜(1))
𝔼[𝑊 𝑟−1]
𝔼[𝑊]𝑟−1

= (1 + 𝑜(1))Γ(𝛼 + 𝑟 − 1)
Γ(𝛼)𝛼𝑟−1

.

To satisfy Assumption 2.1 we must have 𝜆𝑛 →∞, and therefore

log(𝑐𝑛,𝑟−1)
log(𝜆𝑛/𝔼[𝑊̃])

=
log(Γ(𝛼 + 𝑟 − 1)) − log(Γ(𝛼)) − (𝑟 − 1) log(𝛼)

log(𝜆𝑛/𝔼[𝑊̃])
+ 𝑜(1).

Using Stirling’s approximation again relying on the fact that 𝑟 is large, the typical
clique number 𝜔𝑛 is given by the solution in 𝑟 of

𝑟 =
log(𝑛) − log(𝑟) + log(Γ(𝛼 + 𝑟 − 1)) − log(Γ(𝛼)) − (𝑟 − 1) log(𝛼) + 1

log(𝜆𝑛𝛽/𝛼)
+ 1 + 𝑜(1)

=
log(𝑛) − log(𝑟) + (𝛼 + 𝑟 − 3

2
) log(𝛼 + 𝑟 − 2) + 2

log(𝜆𝑛𝛽/𝛼)

−
(𝛼 + 𝑟 − 2) + log(Γ(𝛼)) + (𝑟 − 1) log(𝛼) + 2

log(𝜆𝑛𝛽/𝛼)
+ 1 + 𝑜(1)

=
log(𝑛) + (𝛼 + 𝑟 − 5

2
) log(𝛼 + 𝑟 − 5

2
)

log(𝜆𝑛𝛽/𝛼)

−
(𝛼 + 𝑟 − 5

2
) + log(Γ(𝛼)) + (𝑟 − 1) log(𝛼)

log(𝜆𝑛𝛽/𝛼)
+ 1 + 𝑜(1).

Substituting 𝑥 = 𝑟 + 𝛼 − 5/2, we get

𝑥 =
log(𝑛) + (𝛼 − 𝑥 − 3

2
) log(𝛼) + 𝑥 log(𝑥) − 𝑥 − log(Γ(𝛼)) + 2

log(𝜆𝑛𝛽/𝛼)
− 3
2 + 𝛼 + 𝑜(1).

Solving for 𝑥we find𝜔𝑛+𝛼−5/2, and therefore the typical clique number𝜔𝑛 is given
by

𝜔𝑛 =
2 log(𝑛) − (3 − 2𝛼) log(𝛽𝜆𝑛) + 4 − 2 log(Γ(𝛼))

−𝒲−1 (−
2 log(𝑛)−(3−2𝛼) log(𝛽𝜆𝑛)+4−2 log(Γ(𝛼))

2e𝛽𝜆𝑛
)

+ 5
2 − 𝛼 + 𝑜(1), (2.41)

where𝒲−1 denotes the lower branch of the Lambert-W function, see (2.39).



42 2. Cliques in rank-1 inhomogeneous random graphs

2.6.3.1 First scaling: 𝝀𝒏 = (𝟏 + 𝝋) log(𝒏)/𝜷

Let 𝜆𝑛 = (1+𝜑) log(𝑛)/𝛽, with 𝜑 > 0. We will show that in this case (2.41) simplifies
to the result in Table 2.2. This gives

𝜔𝑛 =
log(𝑛) − (3/2 − 𝛼) log((1 + 𝜑) log(𝑛)) + 2 − log(Γ(𝛼))

−𝒲−1 (−
log(𝑛)−(3/2−𝛼) log((1+𝜑) log(𝑛))+2−log(Γ(𝛼))

𝑒(1+𝜑) log(𝑛)
)

+ 5
2 − 𝛼 + 𝑜(1)

=
log(𝑛) − (3/2 − 𝛼) log((1 + 𝜑) log(𝑛)) + 2 − log(Γ(𝛼))

−𝒲−1 (−
1

e(1+𝜑)
) + 𝑜(1)

+ 5
2 − 𝛼 + 𝑜(1)

= (1 + 𝑜(1))
log(𝑛)

−𝒲−1 (−
1

e(1+𝜑)
)
.

It remains to show that our assumption from (2.40) holds. We will do this in two
parts: (i) where we show 𝔼[𝑊̃ 𝑟−1]/𝔼[𝑊 𝑟−1] → 1 for any 𝑟 ≤ 𝜔𝑛; and (ii) where we
show (𝔼[𝑊̃]/𝔼[𝑊])𝑟−1 → 1 for any 𝑟 ≤ 𝜔𝑛. First, observe that for any 𝑘 ≥ 1we have

𝔼[𝑊̃ 𝑘]
𝔼[𝑊 𝑘]

=
𝔼[𝑊 𝑘 ||𝑊 ≤ 𝜆𝑛

1+𝛿
]

𝔼[𝑊 𝑘]

= 1

ℙ(𝑊 ≤ 𝜆𝑛
1+𝛿

)

∫
𝜆𝑛
1+𝛿
0 𝑥𝑘𝑓𝑊(𝑥) d𝑥
∫∞
0 𝑥𝑘𝑓𝑊(𝑥) d𝑥

=
ℙ(𝑍𝑘 ≤

𝜆𝑛
1+𝛿

)

ℙ(𝑊 ≤ 𝜆𝑛
1+𝛿

)
, (2.42)

where 𝑍𝑘 ∼ Gamma(𝛼 + 𝑘, 𝛽).

Part (i): To simplify notation, let 𝑎 ≔ (1 + 𝜑)/(1 + 𝛿), 𝑏 ≔ −1/𝒲−1 (−1/(e (1 + 𝜑))),
and 𝑧𝑛 ≔ 𝜔𝑛 + 𝛼 − 1 = (1 + 𝑜(1))𝑏 log(𝑛) + 𝛼 − 1. Note that, because 𝜑 > 𝛿 > 0 we
have

𝑎 =
1 + 𝜑
1 + 𝛿 > 1 > (−𝒲−1 (−

1
e (1 + 𝜑)))

−1
= 𝑏.

Finally, let 𝑋𝑖 ∼ Exp(𝛽). Then using (2.42) and Assumption 2.1 we have

𝔼[𝑊̃ 𝑟−1]
𝔼[𝑊 𝑟−1]

= (1 + 𝑜(1))ℙ(𝑍𝑟−1 ≤
𝜆𝑛
1 + 𝛿)

≥ (1 + 𝑜(1))ℙ(
⌈𝑧𝑛⌉
∑
𝑖=1

𝑋𝑖 ≤
𝑎
𝛽 log(𝑛))

= (1 + 𝑜(1))(1 − ℙ( 1
⌈𝑧𝑛⌉

⌈𝑧𝑛⌉
∑
𝑖=1

𝑋𝑖 > (1 + 𝑜(1)) 1𝛽
𝑎
𝑏))

≥ (1 + 𝑜(1))(1 − exp(−⌈𝑧𝑛⌉𝐼((1 + 𝑜(1)) 1𝛽
𝑎
𝑏))), (2.43)
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where 𝐼(𝑥) ≔ 𝑥𝛽−1− log(𝑥𝛽) is the rate function of an exponential distribution with
rate 𝛽. Hence, for 𝑛 large enough and because 𝑎/𝑏 > 1 we have

𝐼((1 + 𝑜(1)) 1𝛽
𝑎
𝑏) = (1 + 𝑜(1))𝐼( 1𝛽

𝑎
𝑏) = (1 + 𝑜(1))((𝑎/𝑏) − 1 − log(𝑎/𝑏)) > 0. (2.44)

Combining (2.43) and (2.44) we see that 𝔼[𝑊̃ 𝑟−1]/𝔼[𝑊 𝑟−1] → 1.

Part (ii): From (2.42) and integration by parts we obtain

𝔼[𝑊̃]
𝔼[𝑊]

=
ℙ(𝑍1 ≤

𝜆𝑛
1+𝛿

)

ℙ(𝑊 ≤ 𝜆𝑛
1+𝛿

)
=
𝛾(1 + 𝛼, 𝛽𝜆𝑛/(1 + 𝛿))
𝛼𝛾(𝛼, 𝛽𝜆𝑛/(1 + 𝛿))

= 1 −
(𝛽𝜆𝑛/(1 + 𝛿))𝛼 exp(−𝛽𝜆𝑛/(1 + 𝛿))

𝛼𝛾(𝛼, 𝛽𝜆𝑛/(1 + 𝛿))

= 1 − 𝑂(1)
log(𝑛)𝛼

𝑛𝑎 ,

where 𝛾(⋅, ⋅) is the lower incomplete gamma function and we recall that 𝑎 = (1 +
𝜑)/(1 + 𝛿) > 1. Hence, we have (𝔼[𝑊̃]/𝔼[𝑊])𝑟−1 → 1 for any 𝑟 ≤ 𝑛.

From parts (i) and (ii) we see that our assumption in (2.40) indeed holds.

2.6.3.2 Second scaling: 𝝀𝒏 = log(𝒏)𝟏+𝝋/𝜷

Let 𝜆𝑛 = log(𝑛)1+𝜑/𝛽, with 𝜑 > 0. We will show that in this case (2.41) simplifies to
the result in Table 2.3. This gives

𝜔𝑛 =
log(𝑛) − (3/2 − 𝛼)(1 + 𝜑) log log(𝑛) + 2 − log(Γ(𝛼))

−𝒲−1 (−
log(𝑛)−(3/2−𝛼)(1+𝜑) log log(𝑛)+2−log(Γ(𝛼))

e log(𝑛)1+𝜑
)

+ 5
2 − 𝛼 + 𝑜(1)

=
log(𝑛) − (3/2 − 𝛼)(1 + 𝜑) log log(𝑛) + 2 − log(Γ(𝛼))

−𝒲−1 (−
1

e log(𝑛)𝜑
) + 𝑜(1)

+ 5
2 − 𝛼 + 𝑜(1)

= (1 + 𝑜(1))
log(𝑛)

log (e log(𝑛)𝜑)
= (1 + 𝑜(1)) 1𝜑

log(𝑛)
log log(𝑛)

.

Compared to Section 2.6.3.1 the scaling 𝜆𝑛 is larger and the typical clique number
𝜔𝑛 is smaller. Therefore, it is evident that our assumption from (2.40) is also valid in
this case.

2.6.4 Half-normal weights

Let 𝑊 have a half-normal distribution with parameters 𝜇 = 0 and 𝜎 > 0, that is
𝑊 ∼ |𝑋|, where 𝑋 ∼ N(0, 𝜎). We proceed in the exact same way as for the Gamma
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distribution, and assume first that

𝑐𝑛,𝑟−1 =
𝔼[𝑊̃ 𝑟−1]
𝔼[𝑊̃]𝑟−1

= (1 + 𝑜(1))
𝔼[𝑊 𝑟−1]
𝔼[𝑊]𝑟−1

= (1 + 𝑜(1))𝜋
𝑟
2
−1Γ(𝑟/2), (2.45)

for all 𝑟 ≤ 𝜔𝑛. To satisfy Assumption 2.1 we must have 𝜆𝑛 →∞, and therefore

log(𝑐𝑛,𝑟−1)
log(𝜆𝑛/𝔼[𝑊̃])

=
( 𝑟
2
− 1) log(𝜋) + log(Γ(𝑟/2))

log(𝜆𝑛/𝔼[𝑊̃])
+ 𝑜(1).

Using Stirling’s approximation and the fact that the typical clique number 𝜔𝑛
grows with 𝑛, the typical clique number 𝜔𝑛 is given by the solution in 𝑟 of

𝑟 =
log(𝑛) − log(𝑟) + ( 𝑟

2
− 1) log(𝜋) + log (Γ ( 𝑟

2
)) + 1

log(𝜆𝑛/√2𝜎2/𝜋)
+ 1 + 𝑜(1)

=
log(𝑛) − log(𝑟) + ( 𝑟

2
− 1) log(𝜋) + ( 𝑟

2
− 1

2
) log ( 𝑟

2
− 1) − 𝑟

2
+ 3

log(𝜆𝑛/√2𝜎2/𝜋)
+ 1 + 𝑜(1)

=
log(𝑛) + ( 𝑟−3

2
) log ( 𝑟−3

2
) + ( 𝑟−3

2
) (log(𝜋) − 1) + log ( e

2√𝜋
2
)

log(𝜆𝑛/√2𝜎2/𝜋)
+ 1 + 𝑜(1).

Substituting 𝑥 = (𝑟 − 3)/2, we get

𝑥 = 1
2

log(𝑛) + 𝑥 log(𝑥) + 𝑥(log(𝜋) − 1) + log ( e
2√𝜋
2
)

log(𝜆𝑛/√2𝜎2/𝜋)
− 1 + 𝑜(1).

Solving for 𝑥 we find (𝜔𝑛 − 3)/2, and therefore the typical clique number 𝜔𝑛 is given
by

𝜔𝑛 =
2 log(𝑛) − 4 log(𝜆𝑛) + 4 − log(𝜋)

−𝒲−1 (−
2 log(𝑛)−4 log(𝜆𝑛)+4−log(𝜋)

e𝜆2𝑛
)
+ 3 + 𝑜(1), (2.46)

where𝒲−1 denotes the lower branch of the Lambert-W function, see (2.39).
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2.6.4.1 First scaling: 𝝀𝒏 = (𝟏 + 𝝋)𝝈√𝟐 log(𝒏)

Let 𝜆𝑛 = (1+𝜑)𝜎√2 log(𝑛), with𝜑 > 0. Wewill show that in this case (2.46) simplifies
to the result in Table 2.2. This gives

𝜔𝑛 =
2 log(𝑛) − 4 log((1 + 𝜑)√2 log(𝑛)) + 4 − log(𝜋)

−𝒲−1 (−
2 log(𝑛)−4 log((1+𝜑)√2 log(𝑛))+4−log(𝜋)

2e(1+𝜑)2 log(𝑛)
)

+ 3 + 𝑜(1)

=
2 log(𝑛) − 2 log log(𝑛) − 2 log(√4𝜋(1 + 𝜑)2/e2)

−𝒲−1 (−
1

e(1+𝜑)2
) + 𝑜(1)

+ 3 + 𝑜(1)

= (1 + 𝑜(1))
2 log(𝑛)

−𝒲−1 (−
1

e(1+𝜑)2
)
.

It remains to show that our assumption from (2.45) holds. We will do this in two
parts: (i) where we show 𝔼[𝑊̃ 𝑟−1]/𝔼[𝑊 𝑟−1] → 1 for any 𝑟 ≤ 𝜔𝑛; and (ii) where we
show (𝔼[𝑊̃]/𝔼[𝑊])𝑟−1 → 1 for any 𝑟 ≤ 𝜔𝑛. First, observe that for any 𝑘 ≥ 1we have

𝔼[𝑊̃ 𝑘]
𝔼[𝑊 𝑘]

=
𝔼[𝑊 𝑘 ||𝑊 ≤ 𝜆𝑛

1+𝛿
]

𝔼[𝑊 𝑘]
= 1

ℙ(𝑊 ≤ 𝜆𝑛
1+𝛿

)

∫
𝜆𝑛
1+𝛿
0 𝑥𝑘𝑓𝑊(𝑥) d𝑥
∫∞
0 𝑥𝑘𝑓𝑊(𝑥) d𝑥

=
ℙ(𝑍𝑘 ≤

𝜆𝑛
1+𝛿

)

ℙ(𝑊 ≤ 𝜆𝑛
1+𝛿

)
,

(2.47)
where it can be recognized that 𝑍𝑘 ∼ Gamma(𝑘+1

2
, 𝜆𝑛
1+𝛿

1
2𝜍2

).

Part (i): First let 𝑎 ≔ (1 + 𝜑)/(1 + 𝛿) and 𝑏 ≔ −2/𝒲−1 (−1/(e (1 + 𝜑)2)) to simplify
notation. Note that, because 𝜑 > 𝛿 > 0 we have

2𝑎2 = 2 (
1 + 𝜑
1 + 𝛿 )

2
> 2 > 2 (−𝒲−1 (−

1
e (1 + 𝜑)2 ))

−1
= 𝑏.

Finally, let 𝑋𝑖 ∼ Exp( 𝜆𝑛
1+𝛿

1
2𝜍2

). Then using (2.47) and Assumption 2.1 we have

𝔼[𝑊̃ 𝑟−1]
𝔼[𝑊 𝑟−1]

≥ (1 + 𝑜(1))ℙ(𝑍⌈𝜔𝑛/2⌉ ≤
𝜆𝑛
1 + 𝛿)

= (1 + 𝑜(1))ℙ(
⌈𝜔𝑛/2⌉
∑
𝑖=1

𝑋𝑖 ≤ 𝑎√2𝜎2 log(𝑛))

= (1 + 𝑜(1))(1 − ℙ( 1
⌈𝜔𝑛/2⌉

⌈𝜔𝑛/2⌉
∑
𝑖=1

𝑋𝑖 > (1 + 𝑜(1))2𝑎𝑏√
2𝜎2

log(𝑛)))

≥ (1 + 𝑜(1))(1 − exp(−⌈𝜔𝑛/2⌉𝐼((1 + 𝑜(1))2𝑎𝑏√
2𝜎2

log(𝑛))))
, (2.48)
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where 𝐼(⋅) denotes the rate function of an exponential distributionwith rate 𝜆𝑛
1+𝛿

1
2𝜍2

=
𝑎√log(𝑛)/(2𝜎2). Hence, for 𝑛 large enough and because 2𝑎2/𝑏 > 1 we have

𝐼((1 + 𝑜(1))2𝑎𝑏√
2𝜎2

log(𝑛))
= (1 + 𝑜(1))(2𝑎

2

𝑏 − 1 − log(2𝑎
2

𝑏 )) > 0. (2.49)

Combining (2.48) and (2.49) we see that 𝔼[𝑊̃ 𝑟−1]/𝔼[𝑊 𝑟−1] → 1.

Part (ii): From (2.47) we obtain

𝔼[𝑊̃]
𝔼[𝑊]

=
ℙ(𝑍1 ≤

𝜆𝑛
1+𝛿

)

ℙ(𝑊 ≤ 𝜆𝑛
1+𝛿

)
=
1 − exp(−( 𝜆𝑛

1+𝛿
)
2 1
2𝜍2

)

erf( 𝜆𝑛
1+𝛿

1
2𝜍2

)
=
1 − exp(−𝑎2 log(𝑛))

erf(𝑎√log(𝑛)/(2𝜎2))
,

where erf(⋅) is the error function and recall 𝑎 = (1 + 𝜑)/(1 + 𝛿) > 1. Hence, we have
(𝔼[𝑊̃]/𝔼[𝑊])𝑟−1 → 1 for any 𝑟 ≤ 𝑛.

From parts (i) and (ii) we see that our assumption from (2.45) was indeed valid.

2.6.4.2 Second scaling: 𝝀𝒏 = 𝝈√𝟐 log(𝒏)
𝟏+𝝋

Let 𝜆𝑛 = 𝜎√2 log(𝑛)
1+𝜑

, with 𝜑 > 0. We will show that in this case (2.46) simplifies
to the result in Table 2.3. This gives

𝜔𝑛 =
2 log(𝑛) − 2(1 + 𝜑) log(2 log(𝑛)) + 4 − log(𝜋)

−𝒲−1 (−
2 log(𝑛)−2(1+𝜑) log(2 log(𝑛))+4−log(𝜋)

e(2 log(𝑛))1+𝜑
)

+ 3 + 𝑜(1)

=
2 log(𝑛) − 2(1 + 𝜑) log(2 log(𝑛)) + 4 − log(𝜋)

−𝒲−1 (−
1

e(2 log(𝑛))𝜑
) + 𝑜(1)

+ 3 + 𝑜(1)

= (1 + 𝑜(1))
2 log(𝑛)

log (e(2 log(𝑛))𝜑)
= (1 + 𝑜(1)) 2𝜑

log(𝑛)
log log(𝑛)

.

Compared to Section 2.6.4.1 the scaling 𝜆𝑛 is larger and the typical clique number 𝜔𝑛
is smaller. Therefore, it is evident that our assumption from (2.45) is also valid in this
case.

2.6.5 Log-normal weights

Let𝑊 have a log-normal distribution with parameters 𝜇 = 0 and 𝜎 = 1, that is𝑊 ∼
exp(𝑋), where 𝑋 is standard normal. Then one can show that the relative moments
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from Definition 2.1 are given by

log(𝑐𝑛,𝑟−1)
log(𝜆𝑛/𝔼[𝑊̃])

=
1
2
(𝑟 − 1)(𝑟 − 2)

log(𝜆𝑛/𝔼[𝑊̃])
+ 𝑜(1). (2.50)

provided that 𝑟 ≤ 𝜔𝑛. For brevity of presentation, we omit the details of this deriva-
tion.

Using this in Definition 2.2, the typical clique number 𝜔𝑛 is the solution in 𝑟 of

𝑟 =
log(𝑛) − log(𝑟) + 1

2
(𝑟 − 1)(𝑟 − 2) + 1

log(𝜆𝑛/√e)
+ 1 + 𝑜(1).

To solve this, we bound the solution with the following two bounds

𝑟 ≤
log(𝑛) + 1

2
(𝑟 − 1)(𝑟 − 2) + 1

log(𝜆𝑛/√e)
+ 1 + 𝑜(1),

𝑟 ≥
log(𝑛) − 𝑟 + 1

2
(𝑟 − 1)(𝑟 − 2) + 1

log(𝜆𝑛/√e)
+ 1 + 𝑜(1).

Solving the above gives

𝜔𝑛 ≤ log(𝜆𝑛) −√log(𝜆𝑛)2 − 2(log(𝑛) + 1) + 1 + 𝑜(1), (2.51)

𝜔𝑛 ≥ log(𝜆𝑛) −√(1 + log(𝜆𝑛))2 − 2 log(𝑛) + 2 + 𝑜(1). (2.52)

Combining (2.51) and (2.52), and plugging in 𝜆𝑛 = (1+𝜑) exp(√2 log(𝑛)), we obtain
the result in Table 2.2. Similarly, the result in Table 2.3 is obtained by plugging in
𝜆𝑛 = exp(√2 log(𝑛))1+𝜑.

It remains to show that our assumption from (2.50) holds. We will do this in two
parts: (i) where we show 𝔼[𝑊̃ 𝑟−1]/𝔼[𝑊 𝑟−1] → 1 for any 𝑟 ≤ 𝜔𝑛; and (ii) where we
show (𝔼[𝑊̃]/𝔼[𝑊])𝑟−1 → 1 for any 𝑟 ≤ 𝜔𝑛. First, observe that for any 𝑘 ≥ 1we have

𝔼[𝑊̃ 𝑘]
𝔼[𝑊 𝑘]

=
𝔼[𝑊 𝑘 ||𝑊 ≤ 𝜆𝑛

1+𝛿
]

𝔼[𝑊 𝑘]
= 1

ℙ(𝑊 ≤ 𝜆𝑛
1+𝛿

)

∫
𝜆𝑛
1+𝛿
0 𝑥𝑘𝑓𝑊(𝑥) d𝑥
∫∞
0 𝑥𝑘𝑓𝑊(𝑥) d𝑥

=
1 − erf (𝑘−log(𝜆𝑛)

√2
)

1 − erf (− log(𝜆𝑛)
√2

)
, (2.53)

where erf(⋅) denotes the error function.
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Part (i): It follows from (2.51) that 𝜔𝑛 ≤ log(𝜆𝑛) + 1 + 𝑜(1), and therefore by (2.53)
we have for all 𝑟 − 1 ≤ 𝜔𝑛 − 1 ≤ log(𝜆𝑛) + 𝑜(1),

𝔼[𝑊̃ 𝑟−1]
𝔼[𝑊 𝑟−1]

≥
1 − erf (𝜔𝑛−1−log(𝜆𝑛)

√2
)

1 − erf (− log(𝜆𝑛)
√2

)
≥

1 − erf ( 𝑜(1)
√2

)

1 − erf (− log(𝜆𝑛)
√2

)
→ 1.

Part (ii): From (2.53) we obtain

(
𝔼[𝑊̃]
𝔼[𝑊]

)
𝑟−1

=
⎛
⎜⎜
⎝

1 − erf ( 1−log(𝜆𝑛)
√2

)

1 − erf (− log(𝜆𝑛)
√2

)

⎞
⎟⎟
⎠

𝑟−1

= (
1 − erf (𝑂(1) −√log(𝑛))

1 − erf (𝑂(1) −√log(𝑛))
)

𝑟−1

Hence, we have (𝔼[𝑊̃]/𝔼[𝑊])𝑟−1 → 1 for any 𝑟 ≤ 𝑛1−𝜀, with 𝜀 > 0.
From parts (i) and (ii) we see that our assumption from (2.50) was indeed valid.



Chapter 3

Quasi-cliques in
inhomogeneous random graphs

Based on:
Quasi-cliques in inhomogeneous random graphs,

K. Bogerd,
Submitted.

Given a graph 𝐺 and a constant 𝛾 ∈ [0, 1], let 𝜔(𝛾)(𝐺) be the largest integer 𝑟
such that there exists an 𝑟-vertex subgraph of 𝐺 containing at least 𝛾(𝑟2) edges. It was
recently shown by Balister, Bollobás, Sahasrabudhe and Veremyev [13] that 𝜔(𝛾)(𝐺) is
highly concentrated when 𝐺 is an Erdős-Rényi random graph. This chapter provides
a simple method to extend that result to a setting of inhomogeneous random graphs,
showing that 𝜔(𝛾)(𝐺) remains concentrated on a small range of values even if 𝐺 is
an inhomogeneous random graph. Furthermore, we give an explicit expression for
𝜔(𝛾)(𝐺) and show that it depends primarily on the largest edge probability of the graph
𝐺.

3.1 Introduction

Let 𝐺 = (𝑉, 𝐸) be a simple graph, with vertex set 𝑉 and edge set 𝐸. Given a subset
of vertices 𝑆 ⊆ 𝑉, let 𝐺[𝑆] denote the subgraph of 𝐺 induced by 𝑆. That is, 𝐺[𝑆] is
a graph with vertex set 𝑆 and edge set {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑆} ∩ 𝐸. A clique is a subset
of vertices 𝐶 ⊆ 𝑉 such that 𝐺[𝐶] is a complete graph, meaning that all vertices in
𝐺[𝐶] are connected by an edge. Cliques are an important concept in graph theory,
and are often used as a model for community structure [6, 121, 133]. In particular,
the problem of finding the largest clique or largest community in a given graph has
received much interest [62, 63].
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However, for many practical applications the definition of a clique can be too
restrictive. Often a few missing edges within a community are fine, as long as the
community remains sufficiently well connected. To this end, several relaxations have
been proposed for the definition of a clique [150]. One of themost successful of these
is known as the 𝛾-quasi-clique, where 𝛾 is a parameter [2]. For 𝛾 ∈ [0, 1], a 𝛾-quasi-
clique is a subset of vertices 𝑆 ⊆ 𝑉 such that 𝐺[𝑆] contains at least 𝛾(|𝑆|2 ) edges. That
is, a 𝛾-quasi-clique is a subset of vertices such that a fraction 𝛾 of all possible edges
between them is present.

Just as for cliques, one would like to know the size of the largest quasi-clique in
a given graph [3, 45, 158]. However, it comes as no surprise that finding the largest
quasi-clique is a computationally hard problem [37, 148, 149], similar to the problem
of finding the largest clique [73, 101, 115]. To circumvent this difficulty, a common
approach has been to study the related problem of determining the size of the largest
clique or quasi-clique in random graphs. For cliques this approach has been very
fruitful, and it turns out that the size of the largest clique is highly concentrated in a
variety of randomgraphmodels. The first results of this typewere obtained for Erdős-
Rényi random graphs [30, 125, 126, 127], and later similar results were obtained for
random geometric graphs [137], and inhomogeneous random graphs [27, 66].

Recently, the size of the largest quasi-clique was also studied in an Erdős-Rényi
random graph, where it was shown that the largest quasi-clique is again highly con-
centrated [13], see also [78, 79, 114]. The aim of this chapter is to extend that result to
the setting of inhomogeneous random graphs. In particular, we formalize a heuristic
presented in Section 2.3.1 from the previous chapter, and show how this (together
with the result from [13]) can be applied to show that the largest quasi-clique re-
mains concentrated on a narrow range of values even in an inhomogeneous random
graph.

3.2 Model and results

We are interested in understanding the behavior of the largest quasi-clique in an in-
homogeneous random graph. To this end, define the 𝛾-quasi-clique number 𝜔(𝛾)(𝐺)
of a graph 𝐺 as the size of the largest subset of vertices 𝑆 ⊆ 𝑉 such that the induced
subgraph 𝐺[𝑆] contains at least 𝛾(|𝑆|2 ) edges, where 𝛾 ∈ [0, 1] is a parameter. Note
that 𝜔(1)(𝐺) is the familiar clique number of 𝐺, usually denoted simply by 𝜔(𝐺).

In this chapter, we study the behavior of 𝜔(𝛾)(𝐺) when 𝐺 is distributed according
to the random graph model 𝔾(𝑛, 𝜅). This model has two parameters: the number of
vertices 𝑛, and a symmetric measurable function called a kernel 𝜅 ∶ [0, 1]2 → (0, 1).
Below we introduce the key concepts of this model, for a more detailed overview
we refer the reader to Lovász’s book [119]. An element of 𝔾(𝑛, 𝜅) is a simple graph
𝐺 = (𝑉, 𝐸) that has 𝑛 ∈ ℕ vertices with vertex set 𝑉 = [𝑛] ≔ {1, … , 𝑛}, and a
random edge set 𝐸. Each vertex 𝑖 ∈ 𝑉 is assigned a weight 𝑊𝑖, which is simply a
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uniform variable on [0, 1], that is 𝑊𝑖 ∼ Unif(0, 1). Conditionally on these weights,
the presence of an edge between two vertices 𝑖, 𝑗 ∈ 𝑉, with 𝑖 ≠ 𝑗, is modeled by
independent Bernoulli random variables with success probability

𝑝𝑖𝑗 ≔ ℙ((𝑖, 𝑗) ∈ 𝐸 | (𝑊𝑘)𝑘∈𝑉) = 𝜅(𝑊𝑖,𝑊𝑗). (3.1)

The kernel 𝜅(⋅, ⋅) and the vertex weights 𝑊𝑖 are both not allowed to depend on
the graph size 𝑛, and therefore the edge probabilities 𝑝𝑖𝑗 are independent of 𝑛. This
means that the graphs we consider are necessarily dense and have a number of edges
that is quadratic in the graph size.

This brings us to the main result of this chapter, which is to show that the 𝛾-
quasi-clique number 𝜔(𝛾)(𝐺) of a graph 𝐺 ∼ 𝔾(𝑛, 𝜅) is concentrated on a small range
of values. Furthermore, this result shows that the size of the largest quasi-clique
depends primarily on the densest part of the graph, where the edge probabilities are
close to their maximum value. This is made precise by the following result.

Theorem 3.1. Let 𝜅(⋅, ⋅) be a kernel that is continuous and attains it maximum value
at the point (𝑐, 𝑐) for some 𝑐 ∈ [0, 1], and let 𝑝max ≔ 𝜅(𝑐, 𝑐). Given 𝑝max < 𝛾 ≤ 1, define

𝜔(𝛾)
𝑛 ≔

2 log(𝑛)
𝐷(𝛾, 𝑝max)

, (3.2)

where 𝐷(𝛾, 𝑝) is the Kullback-Leibler divergence between the Bernoulli distributions
Bern(𝛾) and Bern(𝑝), given by

𝐷(𝛾, 𝑝) ≔ {
𝛾 log( 𝛾

𝑝
) + (1 − 𝛾) log( 1−𝛾

1−𝑝
) if 𝛾 < 1,

log( 1
𝑝
) if 𝛾 = 1.

(3.3)

Then, for every 𝜀 > 0,

ℙ(𝜔(𝛾)(𝐺) ∈ [(1 − 𝜀)𝜔(𝛾)
𝑛 , (1 + 𝜀)𝜔(𝛾)

𝑛 ]) → 1, as 𝑛 → ∞. (3.4)

To display the relevance of the above result, we show that it can be applied
to many well-known random graph models. The simplest example is probably the
Erdős-Rényi random graph, which is obtained by setting the kernel 𝜅(𝑥, 𝑦) to a con-
stant independent of 𝑥 and 𝑦. Another commonly used example are the so-called
rank-1 random graphs, where 𝜅(𝑥, 𝑦) = 𝜑(𝑥)𝜑(𝑦) for some function 𝜑. Often the
function 𝜑(⋅) = 𝐹−1𝑋 (⋅) is the inverse cumulative distribution function of some distri-
bution 𝑋, so that 𝜑(𝑊𝑖) can be interpreted as a sample from that distribution. This
results in a model similar to that considered in the previous chapter. The final model
that satisfies the conditions in Theorem 3.1 is the stochastic block model [106], also
called the planted partitionmodel in computer science. This model is obtained when
the kernel 𝜅(⋅, ⋅) is only allowed to take on finitely many different values.
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Note that Theorem 3.1 gives the first-order behavior of 𝜔(𝛾)
𝑛 from (3.2). More pre-

cise results are known for the clique and quasi-clique number in an Erdős-Rényi ran-
dom graph [13, 126], or for the clique number in rank-1 random graphs [27]. Spe-
cifically, in those cases the quasi-clique number and clique number are concentrated
on two consecutive integers. Therefore, it might be reasonable to expect that it is
likewise possible to show such a two-point concentration result in the more general
model we consider in this chapter. However, this would require a significantly more
detailed analysis. The main difficulty here is that the higher order terms of 𝜔(𝛾)

𝑛 will
likely depend in a complex way on the whole kernel 𝜅(⋅, ⋅) and not just on the max-
imum value 𝜅(𝑐, 𝑐). This was also observed for rank-1 random graphs in Section 2.3.1
from the previous chapter, where several examples are explicitly computed. Thus,
the method we use in the proof of Theorem 3.1 will likely not be precise enough to
characterize the higher order terms of 𝜔(𝛾)

𝑛 and a different approach would be needed
for this.

3.3 Proof

We end this chapter with the proof of Theorem 3.1. This proof is based on the ideas
presented in Section 2.3.1 from the previous chapter combined with the results in
[13] and [126]. Below we consider the upper and lower bound of (3.4) separately.
Furthermore, we use standard asymptotic notation as explained in Section 1.5.

Upper bound: We first define a coupling between the random graph 𝔾(𝑛; 𝜅) and
the Erdős-Rényi random graph 𝔾(𝑛; 𝑝max), where we recall that 𝑝max = 𝜅(𝑐, 𝑐) is the
maximum edge probability. For 𝑖 ≠ 𝑗 ∈ [𝑛], let 𝑈𝑖𝑗 ∼ Unif(0, 1) be independent uni-
form random variables on [0, 1]. Conditionally on these uniform random variables
and the weights𝑊𝑖, with 𝑖 ∈ [𝑛], define

𝐺 = (𝑉, 𝐸), with 𝑉 = [𝑛], and 𝐸 = {(𝑖, 𝑗) ∶ 𝑈𝑖𝑗 ≤ 𝜅(𝑊𝑖,𝑊𝑗)}, (3.5)
𝐺′ = (𝑉 ′, 𝐸′), with 𝑉 ′ = [𝑛], and 𝐸′ = {(𝑖, 𝑗) ∶ 𝑈𝑖𝑗 ≤ 𝜅(𝑐, 𝑐)}.

It can easily be seen that 𝐺 is an inhomogeneous random graph, that is 𝐺 ∼ 𝔾(𝑛, 𝜅).
Similarly, 𝐺′ ∼ 𝔾(𝑛, 𝑝max) is distributed as an Erdős-Rényi random graph with edge
probability 𝑝max = 𝜅(𝑐, 𝑐).

Because the edge probabilities satisfy 𝑝𝑖𝑗 = 𝜅(𝑊𝑖,𝑊𝑗) ≤ 𝑝max almost surely, for
all 𝑖 ≠ 𝑗 ∈ [𝑛], the coupling in (3.5) shows that 𝜔(𝛾)(𝐺) ≤ 𝜔(𝛾)(𝐺′) almost surely.
Furthermore, by [13, Theorem 1] if 𝛾 < 1 or [126, Theorem 6] if 𝛾 = 1, it follows that

𝜔(𝛾)(𝐺′) ≤ 2
𝐷(𝛾, 𝑝max)

(log(𝑛) − log log(𝑛) + log(e𝐷(𝛾, 𝑝max)/2)) + 1 + 𝜀,

with high probability.
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Combining the above, we obtain

𝜔(𝛾)(𝐺) ≤ 𝜔(𝛾)(𝐺′)

≤ 2
𝐷(𝛾, 𝑝max)

(log(𝑛) − log log(𝑛) + log(e𝐷(𝛾, 𝑝max)/2)) + 1 + 𝜀

≤ (1 + 𝜀)
2 log(𝑛)
𝐷(𝛾, 𝑝max)

= (1 + 𝜀)𝜔(𝛾)
𝑛 ,

with high probability. This shows that ℙ (𝜔(𝛾)(𝐺) ≤ (1 + 𝜀)𝜔(𝛾)
𝑛 ) → 1, completing the

proof for the upper bound of (3.4).

Lower bound: Let 𝛿𝑛 = 1/ log(𝑛) and define 𝑆𝑛 ≔ {𝑖 ∈ 𝑉 ∶ 𝑊𝑖 ∈ [𝑐 − 𝛿𝑛, 𝑐 + 𝛿𝑛]} to
be the subset of vertices that have vertex weight𝑊𝑖 close to 𝑐, where we recall that 𝑐
is such that the kernel 𝜅(⋅, ⋅) attains it maximal value at the point (𝑐, 𝑐). Note that the
set 𝑆𝑛 is random and by Hoeffding’s inequality (see [36, Theorem 2.8]), for any fixed
𝑡 > 0, we have

ℙ (|𝑆𝑛| ≤ 𝔼[|𝑆𝑛|] − 𝑡) ≤ exp (−2𝑡2/𝑛) → 0, (3.6)

where 𝔼[|𝑆𝑛|] = 𝑛ℙ(𝑊 ∈ [𝑐 − 𝛿𝑛, 𝑐 + 𝛿𝑛]) = 𝑛1−𝑜(1) by definition of 𝛿𝑛. Further-
more, define 𝑝𝑛 ≔ inf(𝑥,𝑦)∈[𝑐−𝛿𝑛,𝑐+𝛿𝑛]2∩[0,1]2 𝜅(𝑥, 𝑦) and observe that 𝑝𝑛 → 𝑝max by
continuity of the kernel. Therefore we conclude that 𝐷(𝛾, 𝑝𝑛) → 𝐷(𝛾, 𝑝max). Using
this, together with (3.6) and 𝑡 fixed, we obtain

(1 − 𝜀)
2 log(𝑛)
𝐷(𝛾, 𝑝max)

≤ (1 − 𝜀/2)
2 log(𝔼[|𝑆𝑛|] − 𝑡)

𝐷(𝛾, 𝑝max)

≤ (1 − 𝜀/3)
2 log(|𝑆𝑛|)
𝐷(𝛾, 𝑝max)

≤ (1 − 𝜀/4)
2 log(|𝑆𝑛|)
𝐷(𝛾, 𝑝𝑛)

, (3.7)

with high probability.
Similarly to the coupling in (3.5), conditionally on the uniform random variables

𝑈𝑖𝑗, for 𝑖 ≠ 𝑗 ∈ [𝑛], and the vertex weights𝑊𝑖, for 𝑖 ∈ [𝑛], define

𝐺″ = (𝑉″, 𝐸″), with 𝑉″ = [𝑛], and 𝐸″ = {(𝑖, 𝑗) ∶ 𝑈𝑖𝑗 ≤ 𝑝𝑛}. (3.8)

Note that the graph𝐺″ is distributed as the Erdős-Rényi random graph𝔾(𝑛, 𝑝𝑛)with
edge probability 𝑝𝑛.

Given a graph 𝐺, recall that 𝐺[𝑆𝑛] denotes the subgraph induced by the vertices
in 𝑆𝑛. Because the kernel is continuous around the point (𝑐, 𝑐), there exists an 𝑛
large enough such that 𝛿𝑛 is small enough to ensure that the edge probabilities sat-
isfy 𝑝𝑖𝑗 ≥ 𝑝𝑛 almost surely, for all 𝑖 ≠ 𝑗 ∈ 𝑆𝑛 (note that, if the kernel is continuous
everywhere then this holds for every 𝑛). Hence, the coupling in (3.8) shows that
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𝜔(𝛾)(𝐺) ≥ 𝜔(𝛾)(𝐺[𝑆𝑛]) ≥ 𝜔(𝛾)(𝐺″[𝑆𝑛]) almost surely, provided 𝑛 is large enough. Com-
bining this with (3.7) and [13, Theorem 1] if 𝛾 < 1 or [126, Theorem 6] if 𝛾 = 1, we
obtain

𝜔(𝛾)(𝐺) ≥ 𝜔(𝛾)(𝐺[𝑆𝑛]) ≥ 𝜔(𝛾)(𝐺″[𝑆𝑛])

≥ 2
𝐷(𝛾, 𝑝𝑛)

(log(|𝑆𝑛|) − log log(|𝑆𝑛|) + log(e𝐷(𝛾, 𝑝𝑛)/2)) − 𝜀

≥ (1 − 𝜀/4)
2 log(|𝑆𝑛|)
𝐷(𝛾, 𝑝𝑛)

≥ (1 − 𝜀)
2 log(𝑛)
𝐷(𝛾, 𝑝max)

= (1 − 𝜀)𝜔(𝛾)
𝑛 ,

with high probability. This shows that ℙ (𝜔(𝛾)(𝐺) ≥ (1 − 𝜀)𝜔(𝛾)
𝑛 ) → 1, completing the

proof for the lower bound of (3.4).



Chapter 4

Detecting planted communities in
inhomogeneous random graphs

Based on:
Detecting a planted community in an inhomogeneous random graph,

K. Bogerd, R. M. Castro, R. van der Hofstad, and N. Verzelen,
Bernoulli (accepted).

We study the problem of detecting whether an inhomogeneous random graph
contains a planted community. Specifically, we observe a single realization of a graph.
Under the null hypothesis, this graph is a sample from an inhomogeneous random
graph, whereas under the alternative, there exists a small subgraph where the edge
probabilities are increased by a multiplicative scaling factor. We present a scan test
that is able to detect the presence of such a planted community, even when this com-
munity is very small and the underlying graph is inhomogeneous. We also derive
an information theoretic lower bound for this problem which shows that in some re-
gimes the scan test is almost asymptotically optimal. We illustrate our results through
examples and numerical experiments.

4.1 Introduction

Many complex systems can be described by networks of vertices connected by edges.
Usually, these systems can be organized in communities, with certain groups of ver-
tices being more densely connected than others. A central topic in the analysis of
these systems is that of community detection where the goal is to find these more
densely connected groups. This can often reveal interesting properties of the net-
work with important applications in sociology, biology, computer science, and many
other areas of science [76].
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Much of the community detection literature is concentrated around methods
that extract the communities from a given network, see [92, 142, 143]. These meth-
ods typically output an estimate of the community structure regardless of whether
it really is present. Therefore, it is important to investigate when an estimated com-
munity structure is meaningful and when it simply is an artifact of the algorithm.

To answer this question, it has been highly fruitful to analyze the performance of
thesemethods on randomgraphswith a known community structure. The stochastic
blockmodel is arguably the simplestmodel that still captures the relevant community
structure, and the study of this model has led to many interesting results [1, 35, 51,
124, 135, 136]. However, there are significant drawbacks because of this simplicity:
the communities are typically assumed to be very large (i.e., linear in the graph size),
and the graph is homogeneous within each community (i.e., vertices within a com-
munity are exchangeable and, in particular have the same degree distribution).

To overcome these issues, several suggestions have been made. For example,
the degree-corrected block model allows for inhomogeneity of vertices within each
community [116]. This allows one to model real-world networks more accurately,
while remaining tractable enough to obtain results similar to those obtained for the
stochastic block model [85, 95, 96, 111, 112]. However, the degree-corrected block
model still assumes that communities are large. To detect small communities, Arias-
Castro and Verzelen consider a hypothesis testing problem where the goal is not to
find communities, but instead decide whether or not any communities structure is
present in an otherwise homogeneous graph [11, 12].

In this chapter, we also focus on the detection of small communities and we in-
vestigatewhen it is possible to detect the presence of a small community in an already
inhomogeneous random graph. In particular, we present a scan test and provide con-
ditions under which it is able to detect the presence of a small community. These res-
ults are valid under a wide variety of parameter choices, including cases where the
underlying graph is inhomogeneous. Furthermore, we show that for some parameter
choices the scan test is optimal. Specifically, we identify assumptions that ensure that
if the conditions of the scan test are reversed then it is impossible for any test to detect
such a community.

4.2 Model and results

Weconsider the problemof detecting a planted community inside an inhomogeneous
random graph. This is formalized as a hypothesis testing problem, where we observe
a single instance of a simple undirected random graph 𝐺 = (𝑉, 𝐸), with vertex set 𝑉
and edge set 𝐸. We denote the adjacency matrix of 𝐺 by 𝐴, i.e. 𝐴𝑖𝑗 = 𝟙{(𝑖,𝑗)∈𝐸}. That
is, 𝐴𝑖𝑗 = 1 if and only if there is an edge between the vertices 𝑖, 𝑗 ∈ 𝑉. Because we
only consider simple graphs, we have 𝐴𝑖𝑖 = 0 for all 𝑖 ∈ 𝑉.

Under the null hypothesis, denoted by𝐻0, the observed graph is an inhomogen-
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eous random graph on |𝑉| = 𝑛 vertices, where an edge between two vertices 𝑖, 𝑗 ∈ 𝑉
is present, independently of all other edges, with probability 𝑝𝑖𝑗. In other words, the
entries of the adjacency matrix 𝐴 are independent Bernoulli random variables such
that ℙ0(𝐴𝑖𝑗 = 1) = 𝑝𝑖𝑗. The alternative hypothesis, denoted by 𝐻1, is similar, but
within a subset of the vertices the connection probabilities are increased. Formally,
there is a subset 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, called the planted community, for which the
edge probabilities are increased by a multiplicative scaling factor 𝜌𝐶 ≥ 1. Concretely,
under the alternative hypothesis the edge probabilities are ℙ1(𝐴𝑖𝑗 = 1) = 𝜌𝐶𝑝𝑖𝑗 for
𝑖, 𝑗 ∈ 𝐶 and ℙ1(𝐴𝑖𝑗 = 1) = 𝑝𝑖𝑗 otherwise. Note that the scaling 𝜌𝐶 is allowed to de-
pend on the location of the planted community 𝐶 ⊆ 𝑉. This is necessary because our
graphs are inhomogeneous, making the problem difficulty dependent on the location
of the planted community 𝐶 ⊆ 𝑉. Specifically, on a sparse region of the graph it is
relatively difficult to detect a planted community so a strong signal 𝜌𝐶 is required to
ensure a significant difference between the edge probabilities under the null hypo-
thesis ℙ0(𝐴𝑖𝑗 = 1) = 𝑝𝑖𝑗 and the edge probabilities under the alternative hypothesis
ℙ1(𝐴𝑖𝑗 = 1) = 𝜌𝐶𝑝𝑖𝑗. On the other hand, when the community is planted on a dense
region the problem is easier and a smaller signal 𝜌𝐶 could be sufficient. Throughout
this chapter, we assume that the location of the planted community 𝐶 ⊆ 𝑉 is un-
known, but that we do know its size |𝐶| = 𝑟. In particular, we focus on the setting
where 𝑟 → ∞ and is much smaller than 𝑛.

In our analysis we begin by considering the (unrealistic) case where the paramet-
ers 𝑝𝑖𝑗 are all known. This allows us to get a precise characterization of the statistical
difficulty of the problem. In Section 4.2.3 we relax this assumption and show that it is
possible to adapt to unknown parameters under some conditions on the structure of
the edge probabilities 𝑝𝑖𝑗. In particular, there we will assume that the random graph
is rank-1, so that 𝑝𝑖𝑗 = 𝑤𝑖𝑤𝑗 for some vertex weights (𝑤𝑖)𝑛𝑖=1.

To summarize, our goal is to decide whether a given graph contains a planted
community, or equivalently to decide between the hypotheses:
𝐻0: There is no planted community, that is

𝐴𝑖𝑗 ∼ {
Bern(𝑝𝑖𝑗), if 𝑖 ≠ 𝑗,
0, otherwise.

𝐻1: There exists a planted community 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, and 𝜌𝐶 > 1, such that

𝐴𝑖𝑗 ∼
⎧

⎨
⎩

Bern(𝜌𝐶𝑝𝑖𝑗), if 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ 𝐶,
Bern(𝑝𝑖𝑗), if 𝑖 ≠ 𝑗, and 𝑖 ∉ 𝐶 or 𝑗 ∉ 𝐶,
0, otherwise.

Note that in the above definition we are implicitly assuming that 𝜌𝐶 is not too
large, so that 𝜌𝐶𝑝𝑖𝑗 ≤ 1 for all 𝑖, 𝑗 ∈ 𝐶.

Given a graph, we want to determine which of the above models gave rise to
the observation. A test 𝑇𝑛 is any function taking as input a graph 𝑔 on 𝑛 vertices,
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and that outputs either 𝑇𝑛(𝑔) = 0 to claim that there is reason to believe that the null
hypothesis is true (i.e., no community is present) or 𝑇𝑛(𝑔) = 1 to deem the alternative
hypothesis true (i.e., the graph contains a planted community). The worst-case risk
of such a test is defined as

𝑅𝑛(𝑇𝑛) ≔ ℙ0(𝑇𝑛 ≠ 0) + max
𝐶⊆𝑉, |𝐶|=𝑟

ℙ𝐶(𝑇𝑛 ≠ 1), (4.1)

whereℙ0(⋅) denotes the distribution under the null hypothesis, andℙ𝐶(⋅) denotes the
distribution under the alternative hypothesis when 𝐶 ⊆ 𝑉 is the planted community.
A sequence of tests (𝑇𝑛)∞𝑛=1 is called asymptotically powerful when it has vanishing
risk, that is 𝑅𝑛(𝑇𝑛) → 0, and asymptotically powerless when it has risk tending to 1,
that is 𝑅𝑛(𝑇𝑛) → 1.

Notation. Our primary goal is to characterize the asymptotic distinguishability
between the null and alternative hypothesis as the graph size 𝑛 increases. Through-
out this chapter, when limits are unspecified they are taken as the graph size satisfies
𝑛 → ∞. The other parameters𝑝𝑖𝑗, 𝜌𝐶, and 𝑟 are allowed to depend on 𝑛, although this
dependence is left implicit to avoid notational clutter. Furthermore, we use standard
asymptotic notation as described in Section 1.5.

We write 𝑒(𝐶) ≔ ∑𝑖,𝑗∈𝐶 𝐴𝑖𝑗 for the number of edges in the subgraph induced
by 𝐶 ⊆ 𝑉, and 𝑒(𝐶, −𝐶) ≔ ∑𝑖∈𝐶,𝑗∉𝐶 𝐴𝑖𝑗 for the number of edges between 𝐶 and its
complement −𝐶 = 𝑉 ⧵ 𝐶. Finally, define the entropy function

ℎ(𝑥) ≔ (𝑥 + 1) log(𝑥 + 1) − 𝑥. (4.2)

This function plays a prominent role in most of the results in this chapter.

4.2.1 Information theoretic lower bound

We start with a result highlighting conditions underwhich all tests are asymptotically
powerless. Here we assume that the edge probabilities 𝑝𝑖𝑗, the scaling parameters
𝜌𝐶, and the size of the planted community |𝐶| = 𝑟 are all known. When some of
these parameters are unknown, the problem of detecting a planted communitymight
become more difficult, hence any test that is asymptotically powerless when these
parameters are known remains asymptotically powerless when they are unknown.

We prove a lower bound under two different sets of assumptions. To state these
assumptions we define the average edge probability as 𝑝𝐷 = 𝔼0[𝑒(𝐷)]/(

|𝐷|
2 ) for any

𝐷 ⊆ 𝑉. Our assumptions correspond to different regimes of the problem in terms of
planted community size 𝑟. For large communities we need to restrict, in a moderate
way, the amount of inhomogeneity in the underlying graph, with larger communities
requiring stronger restrictions on the amount of inhomogeneity. This results in the
following assumption:



4.2. Model and results 59

Assumption 1.1. There exists 𝛿 ∈ (0, 1/2) such that the following conditions hold:
(i) The planted community cannot be too large, that is 𝑟 = 𝑂(𝑛1/2−𝛿).
(ii) On subgraphs𝐷much smaller than the planted community𝐶, the relative edge

density 𝑝𝐷/𝑝𝐶 cannot be too large. That is, there exists 0 < 𝛾𝑛 = 𝑜(1) such that

max
𝐶⊆𝑉,|𝐶|=𝑟

max
𝐷⊆𝐶,

|𝐷|<𝑟/(𝑛/𝑟)𝛾𝑛

|𝐷| 𝑝𝐷
|𝐶| 𝑝𝐶

≤ 𝛿. (4.3)

(iii) Every potential community 𝐶must be dense enough. Specifically,

max
𝐶⊆𝑉,|𝐶|=𝑟

1
𝑝𝐶

= 𝑜 ( 𝑟
log(𝑛/𝑟))

. (4.4)

Note that the inhomogeneity restriction in Assumption 1.1 (ii) only applies to
small subsets 𝐷 ⊆ 𝐶. In particular, we have |𝐷|/|𝐶| < (𝑟/𝑛)𝛾𝑛 in (4.3), and thus if
the edge probabilities differ by at most a multiplicative factor of 𝑂(log(𝑛)𝑘), for some
fixed constant 𝑘 > 0, then (4.3) can always be satisfied by choosing a sequence 𝛾𝑛 that
converges to zero slowly enough. For example, in the homogeneous settingwhere the
graph is an Erdős-Rényi random graph we know that all edge probabilities are equal
and therefore (4.3) is easily satisfied for any fixed 𝛿 ∈ (0, 1/2).

If the planted community size 𝑟 ismuch smaller than allowed byAssumption 1.1,
then it is not needed to have a restriction on the inhomogeneity, provided that the
graph is dense enough. This gives the following assumption:

Assumption 1.2. We assume that the following two conditions hold:
(i) The planted community is small enough. We require that 𝑟 = 𝑛𝑜(1).
(ii) Every potential community 𝐶must be dense enough. Specifically,

max
𝐶⊆𝑉,|𝐶|=𝑟

log ( 1
𝑝𝐶

) = 𝑜 (
log(𝑛/𝑟)
log(𝑟) ) .

Note that we only need one of the two assumptions above to hold in order to
prove the lower bound in this section. The difference between these two assumptions
is that Assumption 1.1 works best when the planted community is large, whereas As-
sumption 1.2 ismore easily satisfied if the planted community is small. Furthermore,
we need that the underlying graph is not too dense. This is made precise in the fol-
lowing assumption:

Assumption 2. We require thatmax𝐶⊆𝑉,|𝐶|=𝑟max𝑖,𝑗∈𝐶 𝜌2𝐶𝑝𝑖𝑗 → 0 as 𝑛 → ∞.

This assumption accomplishes two goals. First, since 𝜌𝐶 > 1 it forces 𝑝𝑖𝑗 → 0
for every 𝑖, 𝑗 ∈ 𝑉. This ensures that the number of edges in subsets of the vertices is
in essence a sufficient statistic for the testing problem. Secondly, at a more technical
level, 𝑝𝑖𝑗 → 0 is necessary for the Poisson approximations we use and it ensures
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that the differences in edge probabilities 𝑝𝑖𝑗 are not magnified too much under the
alternative. We note that Assumption 2 is not needed when the underlying graph is
homogeneous (i.e., when the null hypothesis corresponds to an Erdős-Rényi random
graph), see [11].

We further discuss Assumptions 1.1, 1.2, and 2 in more detail in Section 4.3. In
that section we give several examples of random graphs that satisfy these assump-
tions.

This brings us to the main result of this section, providing conditions under
which all tests are asymptotically powerless by deriving a minimax lower bound:

Theorem 4.1. Suppose that Assumption 2 and either Assumption 1.1 or 1.2 holds. Let
0 < 𝜀 < 1 be fixed. Then all tests are asymptotically powerless if, for all 𝐶 ⊆ 𝑉 of size
|𝐶| = 𝑟,

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≤ 1 − 𝜀. (4.5)

Condition (4.5) has its counterpart in the work by Arias-Castro and Verzelen
[11, see (9)], who derive a similar result when the underlying graph is an Erdős-Rényi
random graph. However, because of the inhomogeneity in our graphs, themaximum
in (4.5) is not necessarily attained at the planted community𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, but
it could be attained at any of its smaller subgraphs 𝐷 ⊆ 𝐶. This is why our condition
is more complex.

The result in Theorem 4.1 happens to be tight, even in some scenarios where the
edge probabilities 𝑝𝑖𝑗 are unknown, as we construct a scan test that is powerful when
the inequality in (4.5) is, roughly speaking, reversed. This is described in the next
sections.

Finally, the proof of Theorem 4.1 is given in Section 4.5.5 and follows a common
methodology in these cases, by first reducing the composite alternative hypothesis
to a simple alternative hypothesis and then characterizing the optimal likelihood ra-
tio test. This is done via a second-moment method, but it requires a highly careful
truncation argument to attain the sharp characterization above.

4.2.2 Scan test for known edge probabilities

In this section we present a scan test that is asymptotically powerful. We first con-
sider the case where all edge probabilities 𝑝𝑖𝑗 and the community size |𝐶| = 𝑟 are
known. Although this case is unrealistic in practice, it allows us to understand the
fundamental statistical limits of detection. In a sense, knowing the edge probabilities
𝑝𝑖𝑗 is the most optimistic scenario, and so the focus is primarily on whether or not it
is possible to detect a planted community. In the subsequent section we relax this as-
sumption by showing how the scan test can be extended when the edge probabilities
𝑝𝑖𝑗 are unknown.
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Our test statistic is inspired by Bennett’s inequality (see [36, Theorem 2.9]),
which ensures that, for any 𝑡 > 0,

ℙ0(𝑒(𝐷) − 𝔼0[𝑒(𝐷)] ≥ 𝑡) ≤ exp (−𝔼0[𝑒(𝐷)]ℎ(
𝑡

𝔼0[𝑒(𝐷)]
)) , (4.6)

wherewe recall that ℎ(𝑥) = (𝑥+1) log(𝑥+1)−𝑥. Note that this inequality is also valid
when we are under the alternative hypothesis (by simply changing the subscripts 0
to 𝐶). Plugging in 𝑡 = 𝔼0[𝑒(𝐷)]ℎ−1(𝑠/𝔼0[𝑒(𝐷)]) yields the bound

ℙ0 (𝔼0[𝑒(𝐷)]ℎ([
𝑒(𝐷)

𝔼0[𝑒(𝐷)]
− 1]

+
) ≥ 𝑠) ≤ e−𝑠. (4.7)

This result motivates the use of the statistic

𝜏k
𝐷 ≔

𝔼0[𝑒(𝐷)]ℎ ([𝑒(𝐷)/𝔼0[𝑒(𝐷)] − 1]+)
|𝐷| log(𝑛/|𝐷|)

, (4.8)

where the superscript k is used to differentiate between the setting with known edge
probabilities, and the setting with unknown edge probabilities in the next section.
Note that the statistic 𝜏k

𝐷 can be computed because 𝔼0[𝑒(𝐷)] is a function of the
known edge probabilities 𝑝𝑖𝑗.

To construct our test, we simply scan over the whole graph, rejecting the null
hypothesis when there exists a subgraph𝐷 ⊆ 𝑉 of size |𝐷| ≤ 𝑟with an unusually high
value for 𝜏k

𝐷. To be precise, fix 𝜀 > 0, then the scan test rejects the null hypothesis
when

𝜏k ≔ max
𝐷⊆𝑉,|𝐷|≤𝑟

𝜏k
𝐷 ≥ 1 + 𝜀

2 . (4.9)

This test is essentially based on the number of edges 𝑒(𝐷) in subsets 𝐷 ⊆ 𝑉 of size
1 ≤ |𝐷| ≤ 𝑟; rejecting the null hypothesis when there exists a subset 𝐷 ⊆ 𝑉 for which
the number of edges 𝑒(𝐷) becomes substantially larger than its expectation𝔼0[𝑒(𝐷)].
So we are essentially looking for an overly dense subset. Furthermore, the reason we
need to scan over subsets smaller than 𝑟 is because of the possible inhomogeneity in
our model; some edges carry little information and therefore it can be beneficial to
ignore these edges and simply scan over a smaller subgraph instead.

Note that the proposed test is not computationally practical due to the very large
number of sets onemust consider in the scan (unless 𝑟 is very small). However, in this
chapter we are primarily interested in characterizing the statistical limits of possible
tests, apart from computational considerations. See also the discussion in Section 4.4.

In order for the scan test to be powerful under the alternativeweneed𝔼𝐶[𝑒(𝐷)]→
∞ for the most informative subgraph 𝐷 ⊆ 𝐶, because otherwise there is a non-
vanishing probability that 𝑒(𝐷) contains no edges under the alternative (by a standard
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Poisson approximation), making it impossible for the scan test to detect the planted
community. This subgraph is characterized in the following definition:

Definition 4.1. For every subgraph 𝐶 of size |𝐶| = 𝑟, the most informative subgraph
is

𝐷⋆ ≔ argmax
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]
|𝐷| log(𝑛/|𝐷|)

. (4.10)

The subgraph 𝐷⋆ in the definition above is essentially the densest subgraph un-
der the null hypothesis. Using the above we can state the main result of this section,
which provides conditions under which the scan test in (4.9) is asymptotically power-
ful:

Theorem 4.2. Suppose that all edge probabilities 𝑝𝑖𝑗 and the community size 𝑟 are
known. Then the scan test (4.9) is asymptotically powerfulwhen 𝑟 = 𝑜(𝑛),𝔼𝐶[𝑒(𝐷⋆)] →
∞ for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, and

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≥ 1 + 𝜀, (4.11)

where 𝜀 > 0 comes from the definition of the scan test in (4.9).

This result is more widely applicable than the lower bound from Theorem 4.1.
The condition 𝔼𝐶[𝑒(𝐷⋆)] → ∞ is less stringent than either Assumption 1.1 or 1.2.
Also, there is no need for a condition like Assumption 2. This is because we can use
the upper bound from Bennett’s inequality and therefore do not need the Poisson
approximations necessary in deriving the lower bounds. To make this precise and to
make the result in Theorem 4.2 directly comparable to Theorem 4.1 we provide the
following corollary:

Corollary 4.1. Suppose that all edge probabilities 𝑝𝑖𝑗 and the community size 𝑟 are
known, and that either Assumption 1.1 or 1.2 holds. Then the scan test in (4.9) is asymp-
totically powerful when for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≥ 1 + 𝜀, (4.12)

where 𝜀 > 0 comes from the definition of the scan test in (4.9).

To show that Theorem 4.2 applies in a broader setting than the lower bound from
Theorem 4.1 we also provide the following corollary. This shows that the scan test
(4.9) is able to detect large communities (of size larger than√𝑛), even when the edge
probabilities are very small and highly inhomogeneous:
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Corollary 4.2. Suppose that all edge probabilities 𝑝𝑖𝑗 and the community size 𝑟 are
known. Define 𝑝max ≔ max𝑖,𝑗∈𝑉 𝑝𝑖𝑗 and 𝑝min ≔ min𝑖≠𝑗∈𝑉 𝑝𝑖𝑗. If 𝑟 ≥ 𝑛𝑎, 𝑝min ≥ 𝑛−2𝑏,
and 𝑝max/𝑝min = 𝑜(𝑛𝑎−𝑏) for 0 < 𝑏 < 𝑎 < 1, then the scan test in (4.9) is asymptotically
powerful when for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≥ 1 + 𝜀, (4.13)

where 𝜀 > 0 comes from the definition of the scan test in (4.9).

In the corollary above, both 𝑎 and 𝑏 above may depend on the graph size 𝑛. In
particular, if 𝑝max/𝑝min = 𝑂(1) then it is possible that 𝑎 − 𝑏 = 𝑜(1), provided that
(𝑎 − 𝑏) log(𝑛) → ∞. For instance, it is necessary to have 𝑎 − 𝑏 = 𝑜(1) in order to
satisfy Assumption 1.1 (ii).

A downside of the scan test presented in this section is that it requires knowledge
of all edge probabilities 𝑝𝑖𝑗. In practice, these are often unavailable to a statistician.
The next section is devoted to extending the scan test to cope with unknown edge
probabilities, assuming that the edge probabilities have a rank-1 structure.

4.2.3 Scan test for unknown rank-1 edge probabilities

In this section we show how the scan test from the previous section can be extended
to the setting where the edge probabilities 𝑝𝑖𝑗 are unknown. We do still assume that
the community size |𝐶| = 𝑟 is known. As can be seen in (4.8), the scan statistic de-
pends on the edge probabilities 𝑝𝑖𝑗 only through𝔼0[𝑒(𝐷)] = ∑𝑖<𝑗∈𝐷 𝑝𝑖𝑗. Therefore, a
natural way to approach the situationwhere the edge probabilities𝑝𝑖𝑗 are unknown is
to devise a good surrogate for 𝔼0[𝑒(𝐷)] that can be computed solely based on the ob-
served graph (which could be a sample from either the null hypothesis or alternative
hypothesis). Clearly, this is not possible in full generality, but if the edge probabilities
have some additional structure then this become possible.

Here we consider the scenario where, under the null hypothesis, the edge prob-
abilities 𝑝𝑖𝑗 have a so-called rank-1 structure. The resulting model is sometimes also
called a hidden-variable model. That is, we assume that each vertex 𝑖 ∈ 𝑉 is assigned
a weight 𝑤𝑖 ∈ (0, 1) and that the edge probabilities are given by 𝑝𝑖𝑗 = 𝑤𝑖𝑤𝑗. This
is probably one of the simplest models for inhomogeneous random graphs possible.
Note that this model is very similar to the degree corrected stochastic block model
[85, 95, 116], except that our focus is on the detection of small communities, whereas
the literature on stochastic block models is typically concerned with the detection of
much larger communities. Further, there are strong connections between this model
and the configuration model [43, 104].

To make it possible to estimate𝔼0[𝑒(𝐷)]we need to assume that the graph is not
too inhomogeneous and not too sparse, as formulated in the following assumption:
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Assumption 3. Let 𝑤max = max𝑖∈𝑉𝑤𝑖 and 𝑤min = min𝑖∈𝑉𝑤𝑖, then the maximum
allowed inhomogeneity is

(
𝑤max
𝑤min

)
2
= 𝑜 (𝑟2/3∧ 𝑛

𝑟 𝑤
2
min) . (4.14)

Using the above assumption, we will show that it is possible to estimate𝔼0[𝑒(𝐷)]
by using the observed edges going from 𝐷 to the rest of the graph −𝐷 = 𝑉 ⧵ 𝐷. Note
that the exponent 2/3 in Assumption 3 is not an arbitrary choice, but as we explain
below, it is actually the best possible exponent that still ensures that our estimator
works.

When 𝐶 ⊆ 𝑉 is the planted community, and we estimate 𝔼0[𝑒(𝐷)] for a large
enough subgraph 𝐷 ⊆ 𝐶 using this approach, we will obtain an almost unbiased
estimate both under𝐻0 as well as under𝐻1. This is because enough of the edges used
in this estimate have the same distribution under the null and alternative hypothesis.
Our estimator is based on the identity

𝔼0[𝑒(𝐷)] =
(√𝔼0[𝑒(𝑉)]+

1
2
∑
𝑖∈𝑉

𝑤2
𝑖 −√𝔼0[𝑒(𝑉)]+

1
2
∑
𝑖∈𝑉

𝑤2
𝑖 −2𝔼0[𝑒(𝐷,−𝐷)])

2

4 − 1
2
∑
𝑖∈𝐷

𝑤2
𝑖 .

(4.15)
This identity is explained in more detail in Section 4.5.6.5, and it is valid when As-
sumption 3 holds and 𝑛 is large enough. Note that both 𝔼0[𝑒(𝑉)] and 𝔼0[𝑒(𝐷,−𝐷)]
are the sum of a large number of edge probabilities 𝑝𝑖𝑗 = 𝑤𝑖𝑤𝑗, and most of these re-
main unaffected under the alternative hypothesis. Because of this, and since∑𝑖∈𝑉𝑤

2
𝑖

will generally be negligible, we will estimate 𝔼0[𝑒(𝐷)] by

𝑒(𝐷) ≔
(√𝑒(𝑉) −√𝑒(𝑉) − 2𝑒(𝐷,−𝐷))

2

4 . (4.16)

Here we have used that (𝑤max/𝑤min)2 ≤ 𝑟2/3 by Assumption 3, which ensures that
the term ∑𝑖∈𝐷𝑤

2
𝑖 /2 in (4.15) becomes negligible, and therefore that our estimator

𝑒(𝐶) is a good surrogate for 𝔼0[𝑒(𝐷)]. This also explains the exponent 2/3 appearing
in Assumption 3, as this is the largest exponent that still guarantees that the term
∑𝑖∈𝐷𝑤

2
𝑖 /2 is negligible. This is discussed in more detail in Section 4.5.2.

In most cases, the estimator in (4.16) can essentially be used as a plugin for the
scan test of the previous section. However, this estimator might not concentrate very
well when𝔼0[𝑒(𝐷)] becomes too small. To remedy this, we use a thresholded version
of the estimator given by

𝑒(𝐷)∨ ≔ (𝑒(𝐷) ∨ |𝐷|2

𝑛 log4(𝑛/|𝐷|)). (4.17)
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Using the thresholded estimator in (4.17), we can consider the same scan test as in
the previous section but with 𝔼0[𝑒(𝐷)] replaced by the estimator 𝑒(𝐷)∨. This leads to
the definition of the scan test for unknown edge probabilities as

𝜏u
𝐷 ≔

𝑒(𝐷)∨ℎ([𝑒(𝐷)/𝑒(𝐷)∨ − 1]+)

|𝐷| log(𝑛/|𝐷|)
, (4.18)

where the superscript u is used to indicate that we consider the setting with unknown
rank-1 edge probabilities.

As in the previous section, we scan over subgraphs and reject the null hypothesis
when 𝜏u

𝐷 becomes too large. However, as explained above, when scanning over sub-
graphs 𝐷 ⊆ 𝑉 whose size |𝐷| is much smaller than |𝐶| = 𝑟 we run into a problem
because of the bias in 𝑒(𝐷)∨. Luckily this is not a problem because Assumption 3 en-
sures that asymptotically the maximum of 𝜏u

𝐷 will always be attained at a subgraph
of size |𝐷| ≥ 𝑟1/3, see the proof of Lemma 4.1 in Section 4.5.2. Therefore, for 𝜀 > 0
fixed, the scan test for unknown edge probabilities rejects the null hypothesis when

𝜏u ≔ max
𝐷⊆𝑉, 𝑟1/3≤|𝐷|≤𝑟

𝜏u
𝐷 ≥ 1 + 𝜀

3 . (4.19)

This brings us to the main result of this section, which provides conditions for
the scan test in (4.19) to be asymptotically powerful:

Theorem 4.3. Suppose that the community size 𝑟 is known and that Assumption 3
holds. Then the scan test (4.19) is asymptotically powerful when 𝑟 = 𝑜(𝑛),𝔼𝐶[𝑒(𝐷⋆)] →
∞ for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, and

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≥ 1 + 𝜀, (4.20)

where 𝜀 > 0 comes from the definition of the scan test in (4.19).
Comparing this result with Theorem 4.2, we see that for rank-1 random graphs,

Assumption 3 is the only extra condition necessary when the edge probabilities are
unknown. Furthermore, by the same argument as in the previous section it can be
shown that either Assumption 1.1 or 1.2 is sufficient to ensure that 𝔼𝐶[𝑒(𝐷⋆)] → ∞.
Therefore, to make the result in Theorem 4.3 directly comparable to Theorem 4.1 we
provide the following corollary:

Corollary 4.3. Suppose that the community size 𝑟 is known and that Assumption 3,
and either Assumption 1.1 or 1.2 holds. Then the scan test (4.9) is asymptotically power-
ful when, for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≥ 1 + 𝜀, (4.21)

where 𝜀 > 0 comes from the definition of the scan test in (4.19).
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Moreover, a result similar to Corollary 4.2 also applies in the setting with un-
known edge probabilities. This leads to the following result:

Corollary 4.4. Suppose the community size 𝑟 is known and that Assumption 3 holds.
If 𝑟 ≥ 𝑛𝑎, 𝑤min ≥ 𝑛−𝑏, and (𝑤max/𝑤min)2 = 𝑜(𝑛𝑎−𝑏) for 0 < 𝑏 < 𝑎 < 1, then the scan
test in (4.9) is asymptotically powerful when for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≥ 1 + 𝜀, (4.22)

where 𝜀 > 0 comes from the definition of the scan test in (4.19).

4.3 Examples

The results in the previous section provide conditions for when it is possible to detect
a planted community𝐶 ⊆ 𝑉. When the scaling 𝜌𝐶 is large enough it is asymptotically
possible to detect a planted community using the scan test, and when the scaling 𝜌𝐶
is too small it is impossible for any test to detect a planted community. To understand
at which scaling 𝜌𝐶 this change happens, we need to characterize the behavior of

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≈ 1. (4.23)

The subgraph that attains the maximum above will be denoted by 𝐷⋆ = 𝐷⋆ and
was defined in Definition 4.1. In this section, we present several examples of differ-
ent random graph models and illustrate how (4.23) depends on the inhomogeneity
structure. For clarity of presentation, the parameters in these examples are chosen
such that the scaling 𝜌𝐶 satisfying (4.23) always converges to a constant.

In the examples below, the lower bound from Theorem 4.1 as well as the upper
bound from Theorems 4.2 and 4.3 are applicable because Assumptions 1.2, 2 and 3
are all satisfied1. Furthermore, it can be checked that Assumption 1.1 (i) and (ii)
are also satisfied. Thus, the only reason why Assumption 1.1 does not hold in the
examples below is because the edge density condition fromAssumption 1.1 (iii) is not
satisfied. The reason for this is that it is not possible to simultaneously satisfy that
edge density condition and have the scaling 𝜌𝐶 from (4.23) converge to a constant
larger than 1. This means that a choice had to be made between either selecting
examples that satisfy Assumption 1.1 or having 𝜌𝐶−1 converge to a positive constant.
We choose for the latter option to improve the clarity of presentation.

There are, however, also many interesting examples where Assumption 1.1 does
hold. For instance, it is possible to satisfy Assumption 1.1 in any of the examples

1The examples in Section 4.3.4 consider randomly sampled vertex weights, and therefore the assumptions in this
section hold with high probability. Furthermore, this section also contains some examples where Assumption 1.1 instead
of Assumption 1.2 holds.
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belowby simply increasing the community size 𝑟 or the edge density (by increasing all
vertexweights by the same factor). Thus, in the examples below, it is possible to apply
Theorems 4.1, 4.2, and 4.3 because Assumptions 1.2, 2 and 3 hold, and this remains
true for larger community sizes or denser graphs but then because of Assumptions
1.1, 2 and 3. This explains how Assumptions 1.1 and 1.2 are nicely complementing
each other to make our results applicable in a wide range of scenarios.

4.3.1 Erdős-Rényi random graph

The arguably simplest setting where we can apply our results is that of an Erdős-
Rényi random graph, where all edge probabilities 𝑝𝑖𝑗 = 𝑝 are equal, so that the graph
is completely homogeneous. In this case, the subgraph𝐷⋆ that attains themaximum
in (4.23) is always the complete planted community 𝐶 ⊆ 𝑉. Let 𝑟 = 𝑜(𝑛), 𝑟 → ∞ and
𝑝 → 0 be such that 𝑟2𝑝 → ∞. One easily sees that (4.23) becomes

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

=
𝔼0[𝑒(𝐶)]ℎ(𝜌𝐶 − 1)
|𝐶| log(𝑛/|𝐶|)

≍
𝑟𝐻𝑝(𝜌𝐶𝑝)
2 log(𝑛/𝑟)

. (4.24)

where 𝐻𝑝(𝜌𝐶𝑝) is the Kullback-Leibler divergence between Bern(𝑝) and Bern(𝜌𝐶𝑝).
Note that this is the same condition found by Arias-Castro and Verzelen, who con-
sidered the problem of detecting a planted community in an Erdős-Rényi random
graph [11, see (9) and (15)].

4.3.2 Rank-1 random graph with 2 weights

A slightly more complex setting is where the underlying graph has a rank-1 structure
with two different weights. Some of the vertices have large weight 𝑤max, and the
remaining vertices have small weight 𝑤min. Therefore, there are three different edge
probabilities in the underlying graph: 𝑝𝑖𝑗 = 𝑤2

max when both endpoints have large
weight, 𝑝𝑖𝑗 = 𝑤2

min when both endpoints have small weight, and 𝑝𝑖𝑗 = 𝑤max𝑤min
when one of the endpoints has large weight and the other small weight.

The subgraph 𝐷⋆ that attains the maximum in (4.23) depends crucially on the
amount of inhomogeneity in 𝐶 ⊆ 𝑉, and because we only have two different weights
this translates to the ratio of vertices with large weight 𝑤max and vertices with small
weight𝑤min in 𝐶. Moreover, it can be checked that the maximum in (4.23) is attained
either on the whole subgraph 𝐶, or on the subgraph 𝐶max ⊆ 𝐶 consisting of only the
large-weight vertices in 𝐶. Specifically, assuming log(𝑛/|𝐶|) ≍ log(𝑛), the maximum
in (4.23) is attained at 𝐶max when

|𝐶max| > (1 + 𝑜(1))
|𝐶| − 1 + (𝑤max/𝑤min)2

(𝑤max/𝑤min − 1)2
, (4.25)

and otherwise it is attained at 𝐶. Here we can see that the amount of inhomogen-
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eity plays an important role in determining the maximum in (4.23), and therefore in
determining whether a planted community can be detected or not.

In Figure 4.1 we give two examples of the threshold scaling 𝜌𝐶 required for the
scan test to be asymptotically powerful. When, for every 𝐶 ⊆ 𝑉, the scaling 𝜌𝐶 is
chosen above the blue curve then the scan test is asymptotically powerful by Theor-
ems 4.2 and 4.3, and when it is chosen below the blue curve then all tests are asymp-
totically powerless by Theorem 4.1. Here we can clearly see a sharp bend in the blue
curve at the point where |𝐶max| crosses the threshold in (4.25). This happens because
there are many vertices with large weight when |𝐶max| is large and it is optimal to
only use these vertices when trying to detect a planted community. However, there
no longer are enough vertices with large weight when |𝐶max| becomes too small and
it becomes more beneficial to also use the vertices with small weight.
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Figure 4.1: Example of the threshold scaling 𝜌𝐶 required for detecting a planted community
using the optimal subgraph𝐷⋆ (blue, left axis) and the threshold scaling 𝜌𝐶 required when us-
ing the whole subgraph 𝐶 instead (dashed blue, left axis), together with the size of the optimal
subgraph |𝐷⋆| (red, right axis). The specific numerical values are simply chosen to highlight
the different regimes possible; other choices produce similar results.

4.3.3 Rank-1 random graph with 3 weights

Extending the setting in the previous section, we can consider a rank-1 random graph
with three different weights. Some vertices have large weight 𝑤max, some vertices
havemediumweight𝑤med, and the remaining vertices have smallweight𝑤min. In this
setting the situation becomes even more complex, and the subgraph 𝐷⋆ that attains
the maximum in (4.23) depends on the amount of vertices of each type in 𝐶 ⊆ 𝑉.

In Figure 4.2 we give an example of the threshold scaling 𝜌𝐶 required for the scan
test to be asymptotically powerful in the setting with three weights. When, for every
𝐶 ⊆ 𝑉, the scaling 𝜌𝐶 is chosen above the surface then the scan test is asymptotically
powerful by Theorems 4.2 and 4.3, and when it is chosen below the surface then all
tests are asymptotically powerless by Theorem 4.1. We can see that when there are
enough vertices with large weight 𝑤max then it is optimal to only use these large-
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weight vertices (green region), but as the number of large-weight vertices decreases
it becomes beneficial to include also medium-weight vertices (orange region) or even
small-weight vertices (blue region). Note that the cross-section with no medium-
weight vertices is the same as Figure 4.1(a) and the cross-sectionwith no large-weight
vertices is the same as Figure 4.1(b).
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Figure 4.2: Example of the threshold scaling 𝜌𝐶 required for detecting a planted community
when using the optimal subgraph 𝐷⋆. In the blue region 𝐷⋆ consists of all vertices, in the
orange region 𝐷⋆ consists of both large and medium-weight vertices, and in the green region
𝐷⋆ consists only of large-weight vertices. The parameters used are 𝑟 = ⌊log(𝑛)3⌋, 𝑤max =
1/ log(𝑛), 𝑤med = 1/(2.5 log(𝑛)), 𝑤min = 1/(6.5 log(𝑛)). These values are chosen for ease of
comparison with Figure 4.1.

4.3.4 Rank-1 random graph with an arbitrary number of weights

In this section we consider the setting where the graph contains several different ver-
tex weights. In this case it is more difficult to characterize the subgraph 𝐷⋆ that
maximizes (4.23) for a given subgraph 𝐶 ⊆ 𝑉, and finding this subgraph becomes
optimization problem. This is because, for a given size |𝐷|, we only need to consider
the subgraph 𝐷 consisting of the |𝐷| largest weights in 𝐶. Using this insight we can
approximate (4.23). Let ̂𝐹𝐶(𝑥) be the empirical distribution function of the weights
in 𝐶, then

max
𝐷⊆𝐶

𝔼0[𝑒(𝐷)]ℎ(𝜌𝐶 − 1)
|𝐷| log(𝑛/|𝐷|)

≈ max
𝑘∈{1,…,𝑟}

(𝑘2)(
𝑟
𝑘
∫1
𝑟−𝑘
𝑟

̂𝐹−1𝐶 (𝑦)𝑑𝑦)2ℎ(𝜌𝐶 − 1)

𝑘 log(𝑛/𝑘)
(4.26)

≈ max
𝛼∈(0,1]

𝑟
2𝛼

(∫1
1−𝛼

̂𝐹−1𝐶 (𝑦)𝑑𝑦)2ℎ(𝜌𝐶 − 1)
log(𝑛)

,
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where ̂𝐹−1𝐶 (𝑦) = inf{𝑥 ∈ ℝ ∶ 𝑦 ≤ ̂𝐹𝐶(𝑥)} is the quantile function of ̂𝐹𝐶(𝑥), and we
have assumed that 𝑟 = 𝑛𝑜(1) such that log(𝑛/𝑟) ≍ log(𝑛) in the second approximation
above.

To apply (4.26) we need to know ̂𝐹𝐶(𝑥), which is different for every subgraph𝐶 ⊆
𝑉. However, instead of characterizing the threshold scaling 𝜌𝐶 for every subgraph 𝐶,
we can instead consider a uniformly chosen subgraph 𝐶. In this way, if the vertex
weights are sampled from a distribution𝑊 with distribution function 𝐹(𝑥), then we
know from the Glivenko-Cantelli theorem that ̂𝐹𝐶(𝑥)will eventually be close to 𝐹(𝑥),
uniformly in 𝑥. With this in mind, we can consider the required threshold scaling 𝜌𝐶
when 𝐶 is a uniformly chosen subgraph and the vertex weights are sampled from a
distribution𝑊.

In Table 4.1 this is done for a community of size 𝑟 = ⌊log(𝑛)4⌋ and weight distri-
bution 𝑊 = (𝑠 + 𝑋)/ log(𝑛)3/2, where we consider several different distributions 𝑋.
We add a small constant 𝑠 to ensure that none of the vertex weights can become too
small andwe have normalized theweights by log(𝑛)3/2 to ensure that in each example
the maximum weight is less than 1 with high probability. These choices ensure that
Assumptions 1.2, 2, and 3 hold with high probability. Furthermore, we have that
𝑟𝔼[𝑊]2/ log(𝑛/𝑟) = 𝑂(1), and by (4.23) this guarantees that 𝜌𝐶 = 𝑂(1), so we obtain
a numerical value for 𝜌𝐶 that is asymptotically independent of 𝑛.

Table 4.1: The threshold scaling 𝜌𝐶 required to detect a planted community 𝐶 that is planted
uniformly at random (based on setting the approximation in (4.26) equal to 1 and then solving
for 𝜌𝐶). We provide the analytic results together with a numerical example where 𝔼[𝑋] = 1.
The community size is 𝑟 = ⌊log(𝑛)4⌋.

𝑊 Threshold 𝜌𝐶 |𝐷⋆|

𝑠+𝑋
log(𝑛)3/2

, 𝑋∼Degen(𝛿) ℎ−1( 2
(𝑠+𝛿)2

)+1 𝑟

𝛿=1, 𝑠=0.1 3.311 1.000 ⋅ 𝑟

𝑠+𝑡𝑋
log(𝑛)3/2

, 𝑋∼Bern(𝑞) ℎ−1( 2
𝑞(𝑠+𝑡)2∧

2
(𝑠+𝑞𝑡)2

)+1 𝑞𝑟 or 𝑟

𝑞=0.5, 𝑡=2, 𝑠=0.1 2.624 0.500 ⋅ 𝑟

𝑠+𝑋
log(𝑛)3/2

, 𝑋∼Unif(𝑎,𝑏) ℎ−1( 27
4

𝑏−𝑎
(𝑏+𝑠)3

)+1 2
3
𝑏+𝑠
𝑏−𝑎

𝑟

𝑎=0, 𝑏=2, 𝑠=0.1 3.144 0.700 ⋅ 𝑟

𝑠+𝑋
log(𝑛)3/2

, 𝑋∼Exp(𝜆) ℎ−1( 𝜆2

2e𝑠𝜆−1
)+1 e𝑠𝜆−1𝑟

𝜆=1, 𝑠=0.1 2.939 0.407 ⋅ 𝑟
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Table 4.2: The threshold scaling 𝜌𝐶 required to detect a planted community 𝐶 that is planted
uniformly at random (based on setting the approximation in (4.26) equal to 1 and then solving
for 𝜌𝐶). We provide the analytic results for community size 𝑟 = ⌊𝑛1/4 log(𝑛)4⌋. Note that, the
threshold scaling 𝜌𝐶 is equal to 1 + Θ(𝑛−1/8) in these examples because ℎ(𝑥) ≍ 𝑥2/2 as 𝑥 → 0.

𝑊 Threshold 𝜌𝐶 |𝐷⋆|

𝑠+𝑋
log(𝑛)3/2

, 𝑋∼Degen(𝛿) ℎ−1( 1
𝑛1/4

2
(𝑠+𝛿)2

)+1 𝑟

𝑠+𝑡𝑋
log(𝑛)3/2

, 𝑋∼Bern(𝑞) ℎ−1( 1
𝑛1/4

( 2
𝑞(𝑠+𝑡)2∧

2
(𝑠+𝑞𝑡)2

))+1 𝑞𝑟 or 𝑟

𝑠+𝑋
log(𝑛)3/2

, 𝑋∼Unif(𝑎,𝑏) ℎ−1( 1
𝑛1/4

27
4

𝑏−𝑎
(𝑏+𝑠)3

)+1 2
3
𝑏+𝑠
𝑏−𝑎

𝑟

𝑠+𝑋
log(𝑛)3/2

, 𝑋∼Exp(𝜆) ℎ−1( 1
𝑛1/4

𝜆2

2e𝑠𝜆−1
)+1 e𝑠𝜆−1𝑟

Moreover, in Table 4.2 we consider the same examples as in Table 4.1 but with
a larger community size 𝑟 = ⌊𝑛1/4 log(𝑛)4⌋. In this case Assumption 1.2 does not
hold because the community size 𝑟 is too large. However, we can now apply As-
sumption 1.1 instead. To see this, note that Assumption 1.1 (i) and (iii) hold with
high probability provided 𝛿 < 1/4. Furthermore, Assumption 1.1 (ii) also holds with
high probability because the edge probabilities differ by at most a factor log(𝑛)2 (i.e.,
𝑝max/𝑝min = 𝑂(log(𝑛)2)) with high probability.

This shows that Assumptions 1.1 and 1.2 are nicely complementing each other.
For small communities (as in Table 4.1) our results can be applied because Assump-
tions 1.2, 2, and 3 hold with high probability, and for large communities (as in
Table 4.2) our results can still be applied because Assumptions 1.1, 2, and 3 hold
with high probability.

4.4 Discussion

In this section we remark on our results and discuss some possibilities for future
work.

Unknown community size. When presenting our results, we have always as-
sumed that the size of the planted community is known. In practice, this is often
not the case and it would be necessary to estimate the community size before testing.
In our case, the scan test can easily be extended to the setting of unknown community
size. To see this, note that the scan test can detect any planted community provided
that it is not larger than 𝑟. Hence, one can simply use the scan testwith a large enough
value for 𝑟 and it will detect a planted community of size at most 𝑟.
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Alternatives to the scan test. When the community size |𝐶| = 𝑟 becomes much
larger than allowed by Assumption 1.1 or 1.2, that is 𝑟 ≥ √𝑛, then the scan test is no
longer optimal. Thiswas considered byArias-Castro andVerzelen for anErdős-Rényi
random graph [11], where they show that for large communities, a statistic based on
simply counting the total number of edges is optimal. A similar idea can also be ap-
plied in the inhomogeneous settings. This suggests that such a test is asymptotically
powerful, if for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

𝔼𝐶[𝑒(𝐶)] − 𝔼0[𝑒(𝐶)]
√𝔼0[𝑒(𝑉)]

→ ∞. (4.27)

Alternatively, when the communities become extremely large such that 𝑟 = Θ(𝑛)
then our model becomes a version of the degree corrected stochastic block model
[116]. In this case, it might be beneficial to consider tests based on spectral methods
[35, 95, 124, 136].

Another setting where the scan test is no longer optimal is when the underlying
graph is very sparse. In this case, one could consider tests similar to those considered
by Arias-Castro and Verzelen [12].
Beyond the rank-1 case. In Section 4.2.3 we consider unknown edge probabilities
by additionally assuming a rank-1 structure. This can likely be generalized to edge
probabilities that have different structural assumptions, provided Assumption 3 is
suitably adjusted. The main difficulty in obtaining a result similar to Theorem 4.3
would then be to find an estimator for𝔼0[𝑒(𝐶)] and show a consistency result similar
to Lemma4.2. Such a resultwill dependheavily on the precise structural assumptions
made.
Relaxation of Assumptions 1.1, 1.2, and 2. All assumptions needed to prove the
information theoretic lower bound in Section 4.2.1 require that certain conditions
hold for all sets 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟. This can be slightly relaxed because it is only
necessary that these conditions hold for most sets 𝐶 ⊆ 𝑉. Specifically, there needs
to exists a class 𝒞 such that the conditions in Assumptions 1.1, 1.2, and 2 hold for
all 𝐶 ∈ 𝒞 and ℙ̄(𝐶 ∈ 𝒞) → 1, where ℙ̄(⋅) denotes probability with respect to a
uniformly chosen set 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟. To see this, one only needs to modify the
truncation event in (4.52) to also include all sets 𝐶 ∉ 𝒞. That is, one needs to modify
the truncation event to Γ′𝐶 = Γ𝐶 ∪ {𝐶 ∉ 𝒞}, where Γ𝐶 is the original truncation event
from (4.52).
Computational complexity. In general, the computational complexity of scan
tests is not polynomial in the graph size 𝑛. In the homogeneous settings, it has been
conjectured that polynomial time algorithms are not able to achieve the minimax
rate [98]. Inhomogeneity in the graphs can make computations easier – for instance
in very inhomogeneous cases it is possible to recover the largest clique of a graph in
polynomial time [82]. It thus remains an interesting avenue for future work to thor-
oughly characterize the statistical limits of tests under computational constraints.
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4.5 Proofs

In this section we prove our results. We start with the proof of Theorem 4.2 because
it is the simplest and it sets the stage for some of the arguments in the proof of The-
orem 4.3. We end this section with the proof of Theorem 4.1, which shows that the
results obtained in Theorem 4.2 and Theorem 4.3 are, roughly speaking, the best pos-
sible.

4.5.1 Proof of Theorem 4.2: Scan test for known edge probabilities is power-
ful

In this section we prove that the scan test in (4.9) is asymptotically powerful. That is,
under the conditions of the theorem, both type-I and type-II errors vanish.

Type-I error. We will show that ℙ0(𝜏k ≥ 1 + 𝜀/2) → 0. This is done through a
relatively straightforward use of Bennett’s inequality and the union bound. Using
(𝑛𝑘) ≤ (𝑛 e

𝑘
)
𝑘
, it follows that

ℙ0 (𝜏k ≥ 1 + 𝜀
2) = ℙ0 ( max

𝐷⊆𝑉, |𝐷|≤𝑟
𝜏k
𝐷 ≥ 1 + 𝜀

2)

= ℙ0(max1≤𝑘≤𝑟
max

𝐷⊆𝑉, |𝐷|=𝑘

𝔼0[𝑒(𝐷)] ℎ ([𝑒(𝐷)/𝔼0[𝑒(𝐷)] − 1]+)
𝑘 log(𝑛/𝑘)

≥ 1 + 𝜀
2)

≤ ∑
1≤𝑘≤𝑟

∑
𝐷⊆𝑉,|𝐷|=𝑘

ℙ0(
𝔼0[𝑒(𝐷)] ℎ ([𝑒(𝐷)/𝔼0[𝑒(𝐷)] − 1]+)

𝑘 log(𝑛/𝑘)
≥ 1 + 𝜀

2)

≤ ∑
1≤𝑘≤𝑟

(
𝑛
𝑘
) exp (− (1 + 𝜀

2) 𝑘 log (
𝑛
𝑘))

≤ ∑
1≤𝑘≤𝑟

(e (𝑘𝑛)
𝜀/2
)
𝑘

≤
e ( 𝑟

𝑛
)
𝜀/2

1 − e ( 𝑟
𝑛
)
𝜀/2 → 0.

The first and second inequality follow from a simple union bound and Bennett’s in-
equality given in (4.7). The final step relies on the fact that 𝑘/𝑛 ≤ 𝑟/𝑛 and 𝑟 = 𝑜(𝑛).
Therefore we conclude that the scan test (4.9) has vanishing type-I error.

Type-II error. Showing that we have vanishing type-II error starts by realizing that
ℙ𝐶(𝜏k ≥ 1 + 𝜀/2) ≥ ℙ𝐶(𝜏k

𝐷⋆ ≥ 1 + 𝜀/2), for every 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, where 𝐷⋆

was introduced in Definition 4.1. The rest of the proof entails showing that for every
𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

𝜏k
𝐷⋆ ≥ (1 + 𝑜ℙ𝐶(1))

𝔼0[𝑒(𝐷⋆)] ℎ(𝜌𝐶 − 1)
|𝐷⋆| log(𝑛/|𝐷⋆|)

. (4.28)
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Together with (4.11) this implies that, for every 𝐶, we have ℙ𝐶(𝜏k
𝐷⋆ ≥ 1 + 𝜀/2) → 1.

Let 𝐶 ⊆ 𝑉 be an arbitrary subgraph of size |𝐶| = 𝑟 and recall 𝐷⋆ ≔ 𝐷⋆ from
Definition 4.1 (we drop the explicit dependence of 𝐷⋆ on 𝐶 to avoid notational clut-
ter). To prove (4.28) it suffices to show that

𝔼0[𝑒(𝐷⋆)] ℎ([𝑒(𝐷⋆)/𝔼0[𝑒(𝐷⋆)] − 1]+) ≥ (1 + 𝑜ℙ𝐶(1))𝔼0[𝑒(𝐷⋆)] ℎ (𝜌𝐶 − 1) . (4.29)

To see this, note that 𝑥 ↦ ℎ(𝑥 − 1) is convex, with derivative ℎ′(𝑥 − 1) = log(𝑥)
and therefore ℎ(𝑥 − 1) ≥ ℎ(𝑦 − 1) + (𝑥 − 𝑦) log(𝑦). Using this, together with 𝑥 =
𝑒(𝐷⋆)/𝔼0[𝑒(𝐷⋆)] and 𝑦 = 𝔼𝐶[𝑒(𝐷⋆)]/𝔼0[𝑒(𝐷⋆)] = 𝜌𝐶 > 1, we obtain the lower
bound

𝔼0[𝑒(𝐷⋆)] ℎ([ 𝑒(𝐷⋆)
𝔼0[𝑒(𝐷⋆)]

− 1]
+
) − 𝔼0[𝑒(𝐷⋆)] ℎ (𝜌𝐶 − 1)

= 𝔼0[𝑒(𝐷⋆)] ℎ([ 𝑒(𝐷⋆)
𝔼0[𝑒(𝐷⋆)]

− 1]
+
) − 𝔼0[𝑒(𝐷⋆)] ℎ(

𝔼𝐶[𝑒(𝐷⋆)]
𝔼0[𝑒(𝐷⋆)]

− 1)

≥ (𝑒(𝐷⋆) − 𝔼𝐶[𝑒(𝐷⋆)]) log (
𝔼𝐶[𝑒(𝐷⋆)]
𝔼0[𝑒(𝐷⋆)] )

= (𝑒(𝐷⋆) − 𝔼𝐶[𝑒(𝐷⋆)]) log (𝜌𝐶) .

It follows by Chebyshev’s inequality that

(𝑒(𝐷⋆) − 𝔼𝐶[𝑒(𝐷⋆)]) log (𝜌𝐶) = 𝑂ℙ𝐶(√𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶)) .

Therefore, the inequality in (4.29) holds when

√𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶)
𝔼0[𝑒(𝐷⋆)]ℎ (𝜌𝐶 − 1)

= 𝑜(1). (4.30)

To show this, we consider three cases depending on the asymptotic behavior of 𝜌𝐶.
Although these three cases do not cover all possibilities, they suffice, by the argument
in Remark 4.1 below.

Case 1 (𝜌𝐶 → 1): Using√𝑥 log(𝑥) ≍ (𝑥 − 1) as 𝑥 → 1, and ℎ(𝑥 − 1) ≍ (𝑥 − 1)2/2 as
𝑥 → 1 gives

√𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶) = (1 + 𝑜(1))√𝔼0[𝑒(𝐷⋆)](𝜌𝐶 − 1),

and

𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1) = (1 + 𝑜(1))𝔼0[𝑒(𝐷⋆)](𝜌𝐶 − 1)2/2.
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Hence, by (4.11) we have

𝔼0[𝑒(𝐷⋆)](𝜌𝐶 − 1)2 ≍ 2𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1) > 2|𝐷⋆| log(𝑛/|𝐷⋆|) → ∞ .

Combining the above gives

√𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶)
𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1)

= (1 + 𝑜(1)) 2
√𝔼0[𝑒(𝐷⋆)](𝜌𝐶 − 1)2

= 𝑜(1).

This shows that (4.30) holds when 𝜌𝐶 → 1.

Case 2 (𝜌𝐶 → 𝛼 ∈ (1,∞)): In this case √𝜌𝐶 log(𝜌𝐶) = 𝑂 (ℎ(𝜌𝐶 − 1)), and by (4.11)
we have 𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1) ≥ |𝐷⋆| log(𝑛/|𝐷⋆|) → ∞. Therefore

√𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶) =√𝔼0[𝑒(𝐷⋆)]√𝜌𝐶 log(𝜌𝐶) = 𝑜(𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1)).

This shows that (4.30) holds when 𝜌𝐶 → 𝛼 ∈ (1,∞).

Case 3 (𝜌𝐶 →∞): Using ℎ(𝑥−1) ≍ 𝑥 log(𝑥) as 𝑥 → ∞ and because𝔼𝐶[𝑒(𝐷⋆)] → ∞
we have

√𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶)
𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1)

= 1
√𝔼𝐶[𝑒(𝐷⋆)]

= 𝑜(1). (4.31)

This shows that (4.30) holds when 𝜌𝐶 →∞, and therefore that (4.29) holds in all the
three cases.

Remark 4.1 (General 𝜌𝐶 sequences). Note that 𝜌𝐶 might not fit one of the above
cases, but may rather oscillate between a combination of the three. However, this is
not a problem. For every subsequence of 𝜌𝐶, there exists a further subsequence along
which the scaling 𝜌𝐶 satisfies one of the three cases. Hence, (4.30) holds along this
(further) subsequence, which implies that (4.30) also holds along the full sequence.
This type of argument will be used in several more places in the proofs.

The proof of Theorem 4.2 is now easily completed using (4.28) together with
(4.11). For every 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

𝜏k ≥ 𝜏k
𝐷⋆ =

𝔼0[𝑒(𝐷⋆)] ℎ([𝑒(𝐷⋆)/𝔼0[𝑒(𝐷⋆)] − 1]+)

|𝐷⋆| log(𝑛/|𝐷⋆|)

≥ (1 + 𝑜ℙ𝐶(1))
𝔼0[𝑒(𝐷⋆)] ℎ([𝜌𝐶 − 1]+)

|𝐷⋆| log(𝑛/|𝐷⋆|)
≥ (1 + 𝑜ℙ𝐶(1))(1 + 𝜀).

Hence,ℙ𝐶 (𝜏k ≥ 1 + 𝜀/2) → 1. This shows that the type-II error vanishes, completing
the proof.
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4.5.2 Proof of Theorem 4.3: Scan test for unknown rank-1 edge probabilities
is powerful

In this section we prove that the scan test in (4.19) is asymptotically powerful, but
we first derive some auxiliary results. The first of these shows that if a planted com-
munity can be detected then it can be detected based on the evidence of the subgraph
𝐷⋆ from Definition 4.1. Moreover, by Assumption 3 it follows that 𝐷⋆ must be relat-
ively large. Specifically, we show that |𝐷⋆| ≥ 𝑟1/3. This explains why the scan test in
(4.19) is defined to only scan over subgraphs larger than 𝑟1/3.

Lemma 4.1. For any 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, let 𝐷⋆ be as given in Definition 4.1. When
Assumption 3 holds then |𝐷⋆| ≥ 𝑟1/3.

Proof. We use a proof by contradiction. For any 𝐷 ⊆ 𝑉 of size |𝐷| ≤ 𝑟1/3, it follows
by Assumption 3 that

𝔼0[𝑒(𝐷)]
|𝐷| log(𝑛/|𝐷|)

≤
|𝐷| − 1

2
𝑤2
max

log(𝑛/|𝐷|)

≤ 𝑜(𝑟)
2

𝑤2
min

log(𝑛/𝑟1/3)

<
|𝐶| − 1
2

𝑤2
min

log(𝑛/|𝐶|)
≤

𝔼0[𝑒(𝐶)]
|𝐶| log(𝑛/|𝐶|)

.

Hence, a subset 𝐷 ⊆ 𝑉 of size |𝐷| ≤ 𝑟1/3 does not maximize the right-hand side of
(4.10), and therefore |𝐷⋆| ≥ 𝑟1/3.

In the second auxiliary resultwe quantify the deviations of 𝑒(𝐷) around𝔼0[𝑒(𝐷)].
We note that the lemma below remains true when all (1 + 𝑜ℙ0(1)) terms are replaced
by (1 + 𝑜ℙ𝐶(1)) terms. So, this results holds under both the null and alternative hy-
pothesis. This crucial property is key to ensure that we can deal with unknown edge
probabilities.

Lemma 4.2. Let𝒟 be a set of subsets of the vertices 𝑉, such that 𝑟1/3 ≤ |𝐷| ≤ 𝑟 for all
𝐷 ∈ 𝒟. Under Assumption 3 and

𝑒(𝑉) = (1 + 𝑜ℙ0(1))𝔼0[𝑒(𝑉)],
𝑒(𝐷,−𝐷) = (1 + 𝑜ℙ0(1))𝔼0[𝑒(𝐷,−𝐷)], uniformly over all 𝐷 ∈ 𝒟.

the deviations of 𝑒(𝐷) around 𝔼0[𝑒(𝐷)] satisfy

𝑒(𝐷)
𝔼0[𝑒(𝐷)]

= 1 + 𝑜ℙ0(1), uniformly over all 𝐷 ∈ 𝒟.

Additionally, the statement above remains true when all (1 + 𝑜ℙ0(1)) terms are replaced
by (1 + 𝑜ℙ𝐶(1)) terms.
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Proof. Define 𝑓(𝑥1, 𝑥2) ≔ (√𝑥1 −√𝑥1 − 2𝑥2)
2
for 𝑥1 ≥ 2𝑥2. Then the partial deriv-

atives of 𝑓(𝑥1, 𝑥2) are given by

𝜕𝑓
𝜕𝑥1

(𝑥1, 𝑥2) = −
(√𝑥1 −√𝑥1 − 2𝑥2)

2

√𝑥1√𝑥1 − 2𝑥2
= −

𝑓(𝑥1, 𝑥2)
√𝑥1√𝑥1 − 2𝑥2

,

𝜕𝑓
𝜕𝑥2

(𝑥1, 𝑥2) = 2
√𝑥1 −√𝑥1 − 2𝑥2

√𝑥1 − 2𝑥2
=

2𝑓(𝑥1, 𝑥2)
√𝑥1 − 2𝑥2 (√𝑥1 −√𝑥1 − 2𝑥2)

.

We use a Taylor expansion of 𝑓(𝑥1, 𝑥2) around (𝑎1, 𝑎2) with 𝑎1 > 2𝑎2. Specifically,
there exists (𝜉1, 𝜉2) with 𝜉1 in between 𝑥1 and 𝑎1, and 𝜉2 in between 𝑥2 and 𝑎2, such
that

𝑓(𝑥1, 𝑥2) = 𝑓(𝑎1, 𝑎2) +
𝜕𝑓
𝜕𝑥1

(𝜉1, 𝜉2) (𝑥1 − 𝑎1) +
𝜕𝑓
𝜕𝑥2

(𝜉1, 𝜉2) (𝑥2 − 𝑎2). (4.32)

To continue we use (4.32) together with (𝑥1, 𝑥2) = (𝑒(𝑉), 𝑒(𝐷,−𝐷)) and (𝑎1, 𝑎2) =
(𝔼0[𝑒(𝑉)],𝔼0[𝑒(𝐷,−𝐷)]). Because 𝑒(𝑉) = (1 + 𝑜ℙ0(1))𝔼0[𝑒(𝑉)] by assumption, it
follows that for any 𝜉1 between 𝑒(𝑉) and𝔼0[𝑒(𝑉)]we have 𝜉1 = (1+ 𝑜ℙ0(1))𝔼0[𝑒(𝑉)].
Similarly, by assumptionwe have 𝑒(𝐷,−𝐷) = (1+𝑜ℙ0(1))𝔼0[𝑒(𝐷,−𝐷)]uniformly over
all 𝐷 ∈ 𝒟, and therefore it follows that 𝜉2 = (1 + 𝑜ℙ0(1))𝔼0[𝑒(𝐷,−𝐷)]. Hence,

𝑓(𝑒(𝑉), 𝑒(𝐷, −𝐷))
𝑓(𝔼0[𝑒(𝑉)],𝔼0[𝑒(𝐷,−𝐷)])

(4.33)

= 1 −
(1 + 𝑜ℙ0(1)) (𝑒(𝑉) − 𝔼0[𝑒(𝑉)])

√𝔼0[𝑒(𝑉)]√𝔼0[𝑒(𝑉)] − 2𝔼0[𝑒(𝐷,−𝐷)]

+
(2 + 𝑜ℙ0(1)) (𝑒(𝐷, −𝐷) − 𝔼0[𝑒(𝐷,−𝐷)])

√𝔼0[𝑒(𝑉)] − 2𝔼0[𝑒(𝐷,−𝐷)](√𝔼0[𝑒(𝑉)] −√𝔼0[𝑒(𝑉)] − 2𝔼0[𝑒(𝐷,−𝐷)])

= 1 − (1 + 𝑜ℙ0(1))
𝑒(𝑉) − 𝔼0[𝑒(𝑉)]

𝔼0[𝑒(𝑉)]
+ (2 + 𝑜ℙ0(1))

𝑒(𝐷,−𝐷) − 𝔼0[𝑒(𝐷,−𝐷)]
𝔼0[𝑒(𝐷,−𝐷)]

= 1 + 𝑜ℙ0(1),

where we have used 𝔼0[𝑒(𝐷,−𝐷)] = 𝑜(𝔼0[𝑒(𝑉)]) and 𝔼0[𝑒(𝑉)] → ∞ in the second
equality above, which is ensured by Assumption 3. To see this, note that 𝑤2

min ≤ 1
and therefore (𝑤max/𝑤min)2 ≤ 𝑜(𝑛

𝑟
𝑤2
min) ≤ 𝑜(𝑛

𝑟
), hence

𝔼0[𝑒(𝐷,−𝐷)]
𝔼0[𝑒(𝑉)]

≤ (1 + 𝑜(1))
|𝐷|𝑛𝑤2

max

𝑛2𝑤2
min

≤
|𝐷|
𝑛 𝑜 (𝑛𝑟 ) = 𝑜 (

|𝐷|
𝑟 ) = 𝑜(1).
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To continue, we will show that

𝑓 (𝑒(𝑉), 𝑒(𝐷, −𝐷)) = 4 𝑒(𝐷), (4.34)

𝑓 (𝔼0[𝑒(𝑉)],𝔼0[𝑒(𝐷,−𝐷)]) = (1 + 𝑜(1)) (4𝔼0[𝑒(𝐷)] + 2 ∑
𝑖∈𝐷

𝑤2
𝑖 ) (4.35)

= (1 + 𝑜(1)) 4𝔼0[𝑒(𝐷)].

Here (4.34) follows directly from the definition in (4.16). To obtain the first equality in
(4.35) we useAssumption 3 to ensure that𝔼0[𝑒(𝑉)]+

1
2
∑𝑖∈𝑉𝑤

2
𝑖 = (1+𝑜(1))𝔼0[𝑒(𝑉)].

This is easily shown since

𝔼0[𝑒(𝑉)] +∑𝑖∈𝑉𝑤
2
𝑖

𝔼0[𝑒(𝑉)]
≤ 1 + 𝑛𝑤2

max

(𝑛2)𝑤
2
min

≤ 1 +
𝑛𝑟2/3𝑤2

min

(𝑛2)𝑤
2
min

= 1 + 2 𝑟2/3
𝑛 − 1 = 1 + 𝑜(1).

For the second equality in (4.35) we need to show∑𝑖∈𝐷𝑤
2
𝑖 /𝔼0[𝑒(𝐷)] = 𝑜(1). To this

end, we first show
∑𝑖∈𝐷𝑤

2
𝑖

(∑𝑖∈𝐷𝑤𝑖)
2 ≤

1
4|𝐷|

(𝑤min + 𝑤max)2

𝑤min𝑤max
. (4.36)

To see this, note that the ratio ∑𝑖∈𝐷𝑤
2
𝑖 /(∑𝑖∈𝐷𝑤𝑖)

2 is maximized when a fraction
𝛼 = 𝑤min/(𝑤min + 𝑤max) of the vertices in 𝐷 has weight 𝑤max and the remaining
1−𝛼 fraction of vertices has weight𝑤min. Plugging this in we obtain (4.36). Then, by
Assumption 3 it follows that 𝑤max/𝑤min = 𝑜(𝑟1/3) and using that |𝐷| ≥ 𝑟1/3 together
with (4.36), we obtain

∑𝑖∈𝐷𝑤
2
𝑖

(∑𝑖∈𝐷𝑤𝑖)
2 ≤

1
4|𝐷|

(𝑤min + 𝑤max)2

𝑤min𝑤max
≤ 1
|𝐷|

𝑤max
𝑤min

= 𝑜(𝑟1/3)
𝑟1/3

= 𝑜(1).

Hence, plugging (4.34) and (4.35) into (4.33) gives

𝑒(𝐷)
𝔼0[𝑒(𝐷)]

= (1 + 𝑜(1))
𝑓(𝑒(𝑉), 𝑒(𝐷, −𝐷))

𝑓(𝔼0[𝑒(𝑉)],𝔼0[𝑒(𝐷,−𝐷)])
= (1 + 𝑜ℙ0(1)).

Finally, it can easily be checked, using the same steps as above, that the lemma re-
mains true under the alternative hypothesis (i.e., when all (1 + 𝑜ℙ0(1)) terms are re-
placed by (1 + 𝑜ℙ𝐶(1)) terms).

We are now ready to prove Theorem 4.3, which shows that the scan test in (4.19) is
still asymptotically powerful even when the edge probabilities are not known. To
this end, we again show that both the type-I and the type-II error vanish, which we
do separately below.
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Type-I error. Here we showℙ0(𝜏u ≥ 1+𝜀/3) → 0. To this end, we show that using
the truncated estimator 𝑒(𝐷)∨ from (4.17) is asymptotically as good as using𝔼0[𝑒(𝐷)].
Specifically, we show that uniformly over all subgraphs 𝐷 ⊆ 𝑉 of size 𝑟1/3 ≤ |𝐷| ≤ 𝑟,

max
𝐷⊆𝑉, 𝑟1/3≤|𝐷|≤𝑟

𝔼0[𝑒(𝐷)]
𝑒(𝐷)∨

≤ 1 + 𝑜ℙ0(1). (4.37)

To show this, define the random set𝒟 ≔ {𝐷 ⊆ 𝑉 ∶ 𝑟1/3 ≤ |𝐷| ≤ 𝑟, 𝑒(𝐷)∨ ≤ 𝔼0[𝑒(𝐷)]}
and rewrite (4.37) as

max
𝐷⊆𝑉, 𝑟1/3≤|𝐷|≤𝑟

(
𝔼0[𝑒(𝐷)]
𝑒(𝐷)∨

𝟙{𝐷∈𝒟} + 𝔼0[𝑒(𝐷)]
𝑒(𝐷)∨

𝟙{𝐷∉𝒟}) . (4.38)

In the second term above we have 𝐷 ∉ 𝒟, so this term is trivially less than or equal
to 1. Therefore we will focus on the first term in (4.38). For any 𝐷 ∈ 𝒟, it follows by
definition of the thresholded estimator 𝑒(𝐷)∨ in (4.17) that

|𝐷|2

𝑛 log4( 𝑛
|𝐷|) ≤ 𝑒(𝐷)∨ ≤ 𝔼0[𝑒(𝐷)] ≤ (∑

𝑖∈𝐷
𝑤𝑖)

2
, hence

|𝐷|
√𝑛

log2( 𝑛
|𝐷|) ≤ ∑

𝑖∈𝐷
𝑤𝑖.

Now, by the second part of Assumption 3we have 1 ≤ (𝑤max
𝑤min

)
2
≤ 𝑛

𝑟
𝑤2
min, and therefore

𝑤min ≥ √𝑟/𝑛 ≥ 1/√𝑛. Using this we obtain

𝔼0[𝑒(𝐷,−𝐷)] = (∑
𝑖∈𝐷

𝑤𝑖)(∑
𝑗∉𝐷

𝑤𝑗) ≥
|𝐷|
√𝑛

log2( 𝑛
|𝐷|)

𝑛 − |𝐷|
√𝑛

(4.39)

= (1 + 𝑜(1))|𝐷| log2( 𝑛
|𝐷|) .

Recall that Bennett’s inequality ensures that, for 𝑡 > 0,

ℙ0(𝑒(𝐷,−𝐷) − 𝔼0[𝑒(𝐷,−𝐷)] ≤ −𝑡) ≤ exp (−𝔼0[𝑒(𝐷,−𝐷)] ℎ (
𝑡

𝔼0[𝑒(𝐷,−𝐷)]
)) .

To get a uniform bound over all subgraphs 𝐷 ∈ 𝒟, we use a union bound together
with (4.39). For any 𝛿 > 0 and 𝑛 large enough, this gives

ℙ(min
𝐷∈𝒟

𝑒(𝐷,−𝐷) − 𝔼0[𝑒(𝐷,−𝐷)] ≤ −(1 + 𝛿)√2𝔼0[𝑒(𝐷,−𝐷)] |𝐷| log(𝑛/|𝐷|))

≤ ∑
1≤𝑘≤𝑟

∑
𝐷⊆𝑉, |𝐷|=𝑘

𝟙{𝔼0[𝑒(𝐷,−𝐷)]≥(1−𝛿)|𝐷| log2(𝑛/|𝐷|)}

×ℙ(𝑒(𝐷,−𝐷) − 𝔼0[𝑒(𝐷,−𝐷)] ≤ −(1 + 𝛿)√2𝔼0[𝑒(𝐷,−𝐷)] |𝐷| log(𝑛/|𝐷|))
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≤ ∑
1≤𝑘≤𝑟

∑
𝐷⊆𝑉, |𝐷|=𝑘

𝟙{𝔼0[𝑒(𝐷,−𝐷)]≥(1−𝛿)|𝐷| log2(𝑛/|𝐷|)}

× exp(−𝔼0[𝑒(𝐷,−𝐷)] ℎ((1 + 𝛿)
√

2 |𝐷| log(𝑛/|𝐷|)
𝔼0[𝑒(𝐷,−𝐷)]

))

≤ ∑
1≤𝑘≤𝑟

(
𝑛
𝑘
) exp (−(1 + 𝛿)𝑘 log (𝑛𝑘)) (4.40)

≤ ∑
1≤𝑘≤𝑟

(e (𝑘𝑛)
𝛿
)
𝑘

≤
e ( 𝑟

𝑛
)
𝛿

1 − e ( 𝑟
𝑛
)
𝛿 → 0,

For the step in (4.40) we have used the result in (4.39) together with ℎ(𝑥) ≍ 𝑥2/2 as
𝑥 → 0, and the final step relies on the fact that 𝑘/𝑛 ≤ 𝑟/𝑛 and 𝑟 = 𝑜(𝑛).

Then, using the above together with (4.39), it follows that uniformly over𝐷 ∈ 𝒟,

𝑒(𝐷,−𝐷) − 𝔼0[𝑒(𝐷,−𝐷)]
𝔼0[𝑒(𝐷,−𝐷)]

= 𝑂ℙ0(√
|𝐷| log(𝑛/|𝐷|)
𝔼0[𝑒(𝐷,−𝐷)]

) = 𝑜ℙ0(1). (4.41)

To bound the deviations of 𝑒(𝑉) we use Chebyshev’s inequality,

𝑒(𝑉) − 𝔼0[𝑒(𝑉)]
𝔼0[𝑒(𝑉)]

= 𝑂ℙ0(√
1

𝔼0[𝑒(𝑉)]
) = 𝑜ℙ0(1). (4.42)

Using (4.41) and (4.42), it follows by Lemma 4.2 that uniformly over 𝐷 ∈ 𝒟,

𝑒(𝐷)∨

𝔼0[𝑒(𝐷)]
≥ 𝑒(𝐷)

𝔼0[𝑒(𝐷)]
= 1 + 𝑜ℙ0(1).

This shows that the first term in (4.38) is less than or equal to 1+𝑜ℙ0(1), and therefore
that (4.37) holds.

Then, using (4.37) it becomes relatively straightforward to show that the type-
I error vanishes. Indeed, note that 𝑎ℎ([𝑥

𝑎
− 1]+) ≤ 𝑏 ℎ([𝑥

𝑏
− 1]+) for 𝑎 > 𝑏, and

therefore

ℙ0 (𝜏u ≥ 1 + 𝜀
3) = ℙ0 ( max

𝐷⊆𝑉,
𝑟1/3≤|𝐷|≤𝑟

𝑒(𝐷)∨ ℎ ([𝑒(𝐷)/𝑒(𝐷)∨ − 1]
+
)

|𝐷| log (𝑛/|𝐷|)
≥ 1 + 𝜀

3)

≤ ℙ0

⎛
⎜
⎜
⎝

max
𝐷⊆𝑉,

𝑟1/3≤|𝐷|≤𝑟

(1 + 𝑜ℙ0(1))𝔼0[𝑒(𝐷)] ℎ ([(1 + 𝑜ℙ0(1))
𝑒(𝐷)

𝔼0[𝑒(𝐷)]
− 1]

+
)

|𝐷| log (𝑛/|𝐷|)
≥ 1 + 𝜀

3

⎞
⎟
⎟
⎠

.
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Then using the same reasoning as in the proof of Theorem 4.2, it follows that the
type-I error vanishes.

Type-II error. Here we show that ℙ𝐶(𝜏u ≥ 1 + 𝜀/3) ≥ ℙ𝐶(𝜏u
𝐷⋆ ≥ 1 + 𝜀/3) → 1, for

every 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, where 𝐷⋆ = 𝐷⋆ is defined as in (4.10). To this end, we
start by quantifying the deviation of 𝑒(𝐷⋆)/𝔼0[𝑒(𝐷⋆)] under the alternative.

By Chebyshev’s inequality,

𝑒(𝐷⋆, −𝐷⋆) − 𝔼𝐶[𝑒(𝐷⋆, −𝐷⋆)]
𝔼𝐶[𝑒(𝐷⋆, −𝐷⋆)]

= 𝑂ℙ𝐶(√
1

𝔼𝐶[𝑒(𝐷⋆, −𝐷⋆)])
= 𝑜ℙ𝐶(1),

𝑒(𝑉) − 𝔼𝐶[𝑒(𝑉)]
𝔼𝐶[𝑒(𝑉)]

= 𝑂ℙ𝐶(√
1

𝔼𝐶[𝑒(𝑉)]
) = 𝑜ℙ𝐶(1).

Moreover, 𝜌𝐶𝑤2
min ≤ 1 and therefore 𝑤2max

𝑤2min
= 𝑜(𝑛

𝑟
𝑤2
min) ≤ 𝑜(𝑛

𝑟
1
𝜌𝐶
) by Assumption 3.

Hence 𝜌𝐶 ≤ 𝑜 (𝑛
𝑟
𝑤2min
𝑤2max

). Therefore

1 ≤
𝔼𝐶[𝑒(𝐷⋆, −𝐷⋆)]
𝔼0[𝑒(𝐷⋆, −𝐷⋆)]

≤ 1 +
𝔼𝐶[𝑒(𝐷⋆, 𝐶 ⧵ 𝐷⋆)]
𝔼0[𝑒(𝐷⋆, 𝑉 ⧵ 𝐷⋆))]

= 1 + 𝜌𝐶
𝔼0[𝑒(𝐷⋆, 𝐶 ⧵ 𝐷⋆)]
𝔼0[𝑒(𝐷⋆, 𝑉 ⧵ 𝐷⋆))]

≤ 1 + 𝜌𝐶
|𝐷⋆|(|𝐶| − |𝐷⋆|)
|𝐷⋆|(|𝑉| − |𝐷⋆|)

𝑤2
max

𝑤2
min

≤ 1 + 𝜌𝐶
𝑟
𝑛
𝑤2
max

𝑤2
min

≤ 1 + 𝑜(1).

By the above it follows that 𝔼𝐶[𝑒(𝐷⋆, −𝐷⋆)] = (1 + 𝑜(1))𝔼0[𝑒(𝐷⋆, −𝐷⋆)], and simil-
arly 𝔼𝐶[𝑒(𝑉)] = (1 + 𝑜(1))𝔼0[𝑒(𝑉)]. Therefore

𝑒(𝐷⋆, −𝐷⋆) = (1 + 𝑜ℙ𝐶(1))𝔼0[𝑒(𝐷⋆, −𝐷⋆)], and 𝑒(𝑉) = (1 + 𝑜ℙ𝐶(1))𝔼0[𝑒(𝑉)].

Then, applying Lemma 4.2 (using the set𝒟 = {𝐷⋆}), we obtain

𝑒(𝐷⋆)
𝔼0[𝑒(𝐷⋆)]

= 1 + 𝑜ℙ𝐶(1).

Therefore by definition of the thresholded estimator in (4.17),

𝑒(𝐷⋆)∨ = (𝑒(𝐷⋆) ∨ |𝐷⋆|2

𝑛 log4 ( 𝑛
|𝐷⋆| )) (4.43)

= ((1 + 𝑜ℙ𝐶(1))𝔼0[𝑒(𝐷⋆)] ∨ |𝐷⋆|2

𝑛 log4 ( 𝑛
|𝐷⋆| )) .

We continue by considering the two cases in the maximum of (4.43) separately.
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Case 1: Here we have 𝑒(𝐷⋆)∨ = (1 + 𝑜ℙ𝐶(1))𝔼0[𝑒(𝐷⋆)]. Plugging this into the defin-
ition of the test statistic we obtain

𝜏u
𝐷⋆ =

𝑒(𝐷⋆)∨ℎ([ 𝑒(𝐷⋆)
𝑒(𝐷⋆)∨

− 1]
+
)

|𝐷⋆| log(𝑛/|𝐷⋆|)

=
(1+𝑜ℙ𝐶(1))𝔼0[𝑒(𝐷⋆)]ℎ([(1+𝑜ℙ𝐶(1))

𝑒(𝐷⋆)
𝔼0[𝑒(𝐷⋆)]

− 1]
+
)

|𝐷⋆| log(𝑛/|𝐷⋆|)
.

The proof can then be completed by using the same reasoning as in the proof of The-
orem 4.2 from (4.28) to (4.31). Here the additional 𝑜ℙ𝐶(1) terms do not make any
difference.

Case 2: Here we have 𝑒(𝐷⋆)∨ = (|𝐷⋆|2/𝑛) log4 (𝑛/|𝐷⋆|). This corresponds to the
case where the underlying graph is very sparse, and therefore a very large signal 𝜌𝐶
is required to detect a planted community.

We start by deriving a lower bound on 𝜌𝐶. Using condition (4.20) and the fact
that 𝔼0[𝑒(𝐷⋆)] ≤ (|𝐷⋆|2/𝑛) log4 (𝑛/|𝐷⋆|) and ℎ−1(𝑥) ≥ √𝑥, we obtain

𝜌𝐶 ≥ ℎ−1(
|𝐷⋆| log(𝑛/|𝐷⋆|)

𝔼0[𝑒(𝐷⋆)] ) ≥ ℎ−1( 𝑛
|𝐷⋆|

1
log3(𝑛/|𝐷⋆|)

) ≥ (1+𝑜(1))√𝑛/|𝐷⋆|. (4.44)

Moreover, by the second part of Assumption 3 we have 1 ≤ (𝑤max
𝑤min

)2 ≤ 𝑛
𝑟
𝑤2
min, and

therefore 𝑤min ≥ √𝑟/𝑛 ≥ 1/√𝑛. Using this together with (4.44) gives

𝔼𝐶[𝑒(𝐷⋆)]
𝑒(𝐷⋆)∨

≥
𝜌𝐶|𝐷⋆|2𝑤2

min
|𝐷⋆|2

𝑛
log4 ( 𝑛

|𝐷⋆|
)
≥

𝜌𝐶
log4 ( 𝑛

|𝐷⋆|
)
→ ∞.

Then, using that 𝑒(𝐷⋆) = (1+𝑜ℙ𝐶(1))𝔼𝐶[𝑒(𝐷⋆)] by Chebyshev’s inequality and ℎ(𝑥−
1) ≍ 𝑥 log(𝑥) as 𝑥 → ∞, we obtain

𝑒(𝐷⋆)∨ℎ( 𝑒(𝐷
⋆)

𝑒(𝐷⋆)∨
− 1) ≥ 𝑒(𝐷⋆)∨ℎ((1 + 𝑜ℙ𝐶(1))

𝔼𝐶[𝑒(𝐷⋆)]
𝑒(𝐷⋆)∨

− 1) (4.45)

= (1 + 𝑜ℙ𝐶(1))𝔼𝐶[𝑒(𝐷⋆)] log(
𝔼𝐶[𝑒(𝐷⋆)]
𝑒(𝐷⋆)∨

)

= (1 + 𝑜ℙ𝐶(1))𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶
𝔼0[𝑒(𝐷⋆)]
𝑒(𝐷⋆)∨

) .

Now, by the same argument as above we have 𝑤min ≥ 1/√𝑛. Hence, it follows that
𝔼0[𝑒(𝐷⋆)] ≥ |𝐷⋆|2𝑤2

min ≥ |𝐷⋆|2/𝑛, so that𝔼0[𝑒(𝐷⋆)]/𝑒(𝐷⋆)∨ ≥ log−4 (𝑛/|𝐷⋆|). Then,
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using (4.44),

log(𝜌𝐶 𝔼0[𝑒(𝐷⋆)]/𝑒(𝐷⋆)∨)
log(𝜌𝐶)

≥
log(𝜌𝐶/ log

4(𝑛/|𝐷⋆|))
log(𝜌𝐶)

= 1 − 4
log log(𝑛/|𝐷⋆|)

log(𝜌𝐶)
= 1 + 𝑜(1).

Plugging this into (4.45), we obtain

𝑒(𝐷⋆)∨ℎ( 𝑒(𝐷
⋆)

𝑒(𝐷⋆)∨
− 1) = (1 + 𝑜ℙ𝐶(1))𝔼𝐶[𝑒(𝐷⋆)] log(𝜌𝐶

𝔼0[𝑒(𝐷⋆)]
𝑒(𝐷⋆)∨

)

≥ (1 + 𝑜ℙ𝐶(1))𝔼𝐶[𝑒(𝐷⋆)] log (𝜌𝐶)

= (1 + 𝑜ℙ𝐶(1))𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1)

≥ (1 + 𝑜ℙ𝐶(1))(1 + 𝜀)|𝐷⋆| log( 𝑛
|𝐷⋆| ) ,

where the final step follows from (4.20). Therefore, 𝜏u
𝐷⋆ ≥ 1 + 𝜀/3 with high probab-

ility, completing the proof.

4.5.3 Proof of Corollaries 4.1 and 4.3

To prove Corollaries 4.1 and 4.3 we need to show that either Assumption 1.1 or 1.2
is sufficient to ensure that 𝔼𝐶[𝑒(𝐷⋆)] → ∞ for every 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟. When
𝜌𝐶 = 𝑂(1) this is a direct consequence of conditions (4.12) and (4.21), therefore we
will consider the case where 𝜌𝐶 →∞.

Using ℎ(𝑥 − 1) ≍ 𝑥 log(𝑥) as 𝑥 → ∞ together with (4.12) or (4.21), we obtain

𝔼𝐶[𝑒(𝐷⋆)] = (1 + 𝑜(1))
𝔼0[𝑒(𝐷⋆)]ℎ(𝜌𝐶 − 1)

log(𝜌𝐶)
≥ (1 + 𝑜(1))

|𝐷⋆| log(𝑛/|𝐷⋆|)
log(𝜌𝐶)

. (4.46)

Below we consider the two cases where Assumption 1.1 or Assumption 1.2 hold sep-
arately.

Case 1 (Assumption 1.1 holds): First, by Definition 4.1 and Assumption 1.1, it fol-
lows that for every 𝐶 ⊆ 𝑉,

𝔼0[𝑒(𝐷⋆)]
|𝐷⋆| log(𝑛/|𝐷⋆|)

≥
𝔼0[𝑒(𝐶)]

|𝐶| log(𝑛/|𝐶|)
= (1 + 𝑜(1))

𝑟𝑝𝐶
2 log(𝑛/𝑟)

→ ∞,

where the final step is a consequence of Assumption 1.1 (iii). In particular, thismeans
that we must have that |𝐷⋆| → ∞.
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Then, for every 𝐶 ⊆ 𝑉we have 𝜌𝐶𝑝𝐶 ≤ 1, and therefore 𝜌𝐶 ≤ 1/𝑝𝐶 ≤ 𝑟 ≤ √𝑛 for
𝑛 large enough by Assumption 1.1 (i) and (iii). Therefore, using (4.46) and because
|𝐷⋆| → ∞, it follows that

𝔼𝐶[𝑒(𝐷⋆)] ≥ (1 + 𝑜(1))
|𝐷⋆| log(𝑛/|𝐷⋆|)

log(𝜌𝐶)
≥ (1 + 𝑜(1)) |𝐷⋆|

log(√𝑛)
log(√𝑛)

→ ∞.

Case 2 (Assumption 1.2 holds): For every 𝐶 ⊆ 𝑉 we have 𝜌𝐶𝑝𝐶 ≤ 1, and therefore
log(𝜌𝐶) ≤ log(1/𝑝𝐶) = 𝑜(log(𝑛)) by Assumption 1.2 (ii). Hence, using (4.46), we
obtain

𝔼𝐶[𝑒(𝐷⋆)] ≥ (1 + 𝑜(1))
|𝐷⋆| log(𝑛/|𝐷⋆|)

log(𝜌𝐶)
≥ (1 + 𝑜(1))

|𝐷⋆| log(𝑛)
𝑜(log(𝑛))

→ ∞.

The above two cases show that either Assumption 1.1 or 1.2 is sufficient to ensure
that 𝔼𝐶[𝑒(𝐷⋆)] → ∞ for every 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟.

4.5.4 Proof of Corollaries 4.2 and 4.4

Begin by noting that the conditions in Corollary 4.4 imply the conditions on 𝑝max
and 𝑝min that are stated in Corollary 4.2. To prove Corollaries 4.2 and 4.4 we need to
show that 𝔼𝐶[𝑒(𝐷⋆)] → ∞ for every 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟. Because 𝑝max/𝑝min =
𝑜(𝑛𝑎−𝑏), there exists a sequence 𝑥𝑛 → ∞ such that 𝑝max/𝑝min = 𝑛𝑎−𝑏/𝑥𝑛. We will
first show that |𝐷⋆| ≥ 𝑛𝑏√𝑥𝑛, which we will do by a similar argument as in the proof
of Lemma 4.1. Suppose |𝐷⋆| ≤ 𝑛𝑏√𝑥𝑛, then because 𝑟 ≥ 𝑛𝑎,

𝔼0[𝑒(𝐷⋆)]
|𝐷⋆| log(𝑛/|𝐷⋆|)

≤
|𝐷⋆| − 1

2
𝑝max

log(𝑛/|𝐷⋆|)

=
|𝐷⋆| − 1

2
𝑛𝑎−𝑏
𝑥𝑛

𝑝min
log(𝑛/|𝐷⋆|)

≤ 𝑂(1) 𝑛
𝑎

√𝑥𝑛

𝑝min
log(𝑛/𝑟)

< 𝑟 − 1
2

𝑝min
log(𝑛/𝑟)

≤
𝔼0[𝑒(𝐶)]

|𝐶| log(𝑛/|𝐶|)
.

Hence, 𝐷⋆ cannot be the maximizer in (4.10) when |𝐷⋆| ≤ 𝑛𝑏√𝑥𝑛, and therefore we
must have |𝐷⋆| ≥ 𝑛𝑏√𝑥𝑛. Therefore,

𝔼𝐶[𝑒(𝐷⋆)] ≥ 𝔼0[𝑒(𝐷⋆)] ≥
|𝐷⋆|2

2 𝑝min ≥
𝑛2𝑏𝑥𝑛
2 𝑛−2𝑏 →∞.

The proof of Corollary 4.2 is then completed by applying Theorem 4.2, and similarly
the proof of Corollary 4.4 is completed by applying Theorem 4.3.
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4.5.5 Proof of Theorem 4.1: Information theoretic lower bound

To prove Theorem 4.1 we need to show that 𝑅𝑛(𝑇𝑛) → 1, where 𝑅𝑛 is the worst-case
risk given in (4.1) and𝑇𝑛 ↦ {0, 1} is any test deciding between the null and alternative
hypothesis. The first step is a reduction from the worst-case risk to the average risk

𝑅̄𝑛(𝑇𝑛) ≔ ℙ0(𝑇𝑛(𝐺) = 1) + (
𝑛
𝑟
)
−1

∑
𝐶⊆𝑉, |𝐶|=𝑟

ℙ𝐶(𝑇𝑛(𝐺) = 0).

Note that the average risk is a lower bound for the worst-case risk, that is 𝑅𝑛(𝑇𝑛) ≥
𝑅̄𝑛(𝑇𝑛). This average risk corresponds to a hypothesis test between two simple hypo-
theses, because the alternative hypothesis is now simple. The means that the like-
lihood ratio test is optimal (by the Neyman-Pearson lemma). In particular, the test
𝑇LR(𝐺) = 𝟙{𝐿(𝐺)>1} minimizes the average risk, where 𝐿(𝐺) is the likelihood ratio,
given in (4.47) below. To avoid overloading the notation we write simply 𝐿 to denote
𝐿(𝐺). The risk of this test is given by

𝑅̄𝑛(𝑇LR) = ℙ0(𝐿 > 1) + 𝔼0[𝐿𝟙{𝐿≤1}] = 1 − 1
2 𝔼0[|𝐿 − 1|].

Therefore, to prove Theorem 4.1, it suffices to show that 𝔼0[|𝐿 − 1|] → 0.
Given a graph 𝑔, the likelihood ratio 𝐿(𝑔) is given by

𝐿(𝑔) ≔ (
𝑛
𝑟
)
−1

∑
𝐶⊆𝑉, |𝐶|=𝑟

ℙ𝐶(𝐺 = 𝑔)
ℙ0(𝐺 = 𝑔)

= (
𝑛
𝑟
)
−1

∑
𝐶⊆𝑉, |𝐶|=𝑟

𝐿𝐶(𝑔) = 𝔼̄[𝐿𝐶(𝑔)], (4.47)

where 𝔼̄[⋅] denotes the expectation with respect to a uniformly chosen set 𝐶 ⊆ 𝑉 of
size |𝐶| = 𝑟, and

𝐿𝐶(𝑔) ≔ ∏
𝑖<𝑗∈𝐶

(
𝜌𝐶𝑝𝑖𝑗
𝑝𝑖𝑗

)
𝐴𝑖𝑗

(
1 − 𝜌𝐶𝑝𝑖𝑗
1 − 𝑝𝑖𝑗

)
1−𝐴𝑖𝑗

. (4.48)

To bound 𝔼0[|𝐿 − 1|] one generally resorts to the Cauchy-Schwarz inequality to con-
trol instead the secondmoment of 𝐿 and obtain𝔼0[|𝐿−1|] ≤ 𝔼0[𝐿2]−1. However, in
our setting this bound is too crude, and the variance of 𝐿 will be rather large in com-
parison to the first moment. To see this note that the second moment can be written
as

𝔼0[𝐿2] = 𝔼̄⊗2 [𝔼0 [𝐿𝐶1𝐿𝐶2]]

= 𝔼̄⊗2[𝔼0[ ∏
𝑖<𝑗∈𝐶1∩𝐶2

(
𝜌𝐶1𝑝𝑖𝑗𝜌𝐶2𝑝𝑖𝑗

𝑝2𝑖𝑗
)
𝐴𝑖𝑗

(
(1 − 𝜌𝐶1𝑝𝑖𝑗)(1 − 𝜌𝐶2𝑝𝑖𝑗)

(1 − 𝑝𝑖𝑗)2
)
1−𝐴𝑖𝑗

]],

where 𝔼̄⊗2[⋅] denotes expectation with respect to two independently and uniformly
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chosen sets𝐶1, 𝐶2 ⊆ 𝑉 of size |𝐶1| = |𝐶2| = 𝑟. This secondmoment depends crucially
on 𝑒(𝐶1 ∩ 𝐶2), the number of edges in the intersection of 𝐶1 and 𝐶2. Although this
intersection is empty or very small with high probability it can be large with small
probability, resulting in a very large second moment if the number of edges inside it
is large as well.

To deal with this issuewe use amore refined approach suggested by Ingster [108]
and later used by Butucea and Ingster [50] and Arias-Castro and Verzelen [11]. This
approach relies on a truncation of the likelihood ratio

̃𝐿 ≔ (
𝑛
𝑟
)
−1

∑
𝐶⊆𝑉, |𝐶|=𝑟

𝟙Γ𝐶𝐿𝐶 = 𝔼̄[𝟙Γ𝐶𝐿𝐶],

where 𝐿𝐶 is as given by (4.48) and Γ𝐶 is some truncation event. Using ̃𝐿 ≤ 𝐿, the
triangle inequality, and the Cauchy-Schwarz inequality, we obtain the upper bound

𝔼0[|𝐿 − 1|] ≤ 𝔼0[| ̃𝐿 − 1|] + 𝔼0[𝐿 − ̃𝐿] ≤√𝔼0[ ̃𝐿2] − 2𝔼0[ ̃𝐿] + 1 + 1 − 𝔼0[ ̃𝐿].

Therefore, 𝑅̄𝑛(𝑇LR) → 1 when both 𝔼0[ ̃𝐿] → 1 and 𝔼0[ ̃𝐿2] → 1. So, the ideal trunca-
tion event should lower the variance of ̃𝐿 while still ensuring that the first moment
of ̃𝐿 approaches 1.

Intuitively, we would like to use the truncation event to prevent “bad behavior”
at the intersection of two sets 𝐶1 and 𝐶2. However, we can only state the truncation
event in terms of one of these sets. This creates a challenge. For a given set 𝐶 ⊆ 𝑉,
the potentially problematic intersections are sets 𝐷 ⊆ 𝐶 for which 𝔼0[𝑒(𝐷)] is large.
We will denote by ℰ𝐶 (see (4.51) below) this class of “potentially problematic” sets.
The idea is then to construct the truncation event so that it removes the set 𝐶 from
consideration if it contains a subset 𝐷 ∈ ℰ𝐶 for which the number of edges 𝑒(𝐷) is
significantly larger than its expectation 𝔼0[𝑒(𝐷)].

To formalize this, it is helpful to express the likelihood ratio in amore convenient
form. Namely,

𝐿𝐶(𝑔) = exp( ∑
𝑖<𝑗∈𝐶

𝐴𝑖𝑗 log (
𝜌𝐶𝑝𝑖𝑗
𝑝𝑖𝑗

) + (1 − 𝐴𝑖𝑗) log (
1 − 𝜌𝐶𝑝𝑖𝑗
1 − 𝑝𝑖𝑗

)) (4.49)

= exp( ∑
𝑖<𝑗∈𝐶

𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗) − Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗))),

with

𝜃𝑖𝑗(𝑞) ≔ log (
𝑞(1 − 𝑝𝑖𝑗)
𝑝𝑖𝑗(1 − 𝑞))

, and Λ𝑖𝑗(𝜃) ≔ log (1 − 𝑝𝑖𝑗 + 𝑝𝑖𝑗e𝜃) .
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Note that Λ𝑖𝑗(𝜃) is the cumulant generating function of Bern(𝑝𝑖𝑗), with Fenchel-
Legendre transform given by

𝐻𝑝𝑖𝑗(𝑞) = sup
𝑥≥0

{𝑞𝑥 − Λ𝑖𝑗(𝑥)} = 𝑞 𝜃𝑖𝑗(𝑞) − Λ𝑖𝑗(𝜃𝑖𝑗(𝑞)), for 𝑞 ∈ (𝑝𝑖𝑗, 1), (4.50)

where𝐻𝑝(𝑞) ≔ 𝑞 log( 𝑞
𝑝
)+(1−𝑞) log( 1−𝑞

1−𝑝
) is theKullback-Leibler divergence between

Bern(𝑝) and Bern(𝑞).
Now, to construct the truncation event Γ𝐶, we begin by defining for each set 𝐶 ⊆

𝑉 a class of “potentially problematic” intersection sets as

ℰ𝐶 ≔ {𝐷 ⊆ 𝐶 ∶ (𝜌𝐶 − 1)2 𝔼0[𝑒(𝐷)] > (1 − 𝜀/2)|𝐷| (log (
𝑛|𝐷|
𝑟2 ) − 𝑏𝑛)} , (4.51)

where 𝑏𝑛 → ∞ very slowly. For concreteness we will take 𝑏𝑛 = log log(𝑛/𝑟). Using
this, we define the numbers 𝜁𝐷 in the lemma below, the proof of this lemma ismainly
technical and is therefore deferred to Section 4.5.6:

Lemma 4.3. Let Assumption 2, and either Assumption 1.1 or 1.2 hold. Then for any
𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟 and 𝐷 ∈ ℰ𝐶 there exists a unique number 𝜁𝐷 ≥ 1, such that for 𝑛
large enough,

(1 + 𝜀)𝔼0[𝑒(𝐷)]ℎ(𝜁𝐷 − 1) = |𝐷| log ( 𝑛
|𝐷|) .

Moreover, 𝜁𝐷 satisfies 𝜃𝑖𝑗(𝜁𝐷 𝑝𝑖𝑗) ≤ 2𝜃𝑖𝑗(𝜌𝐶 𝑝𝑖𝑗) for every 𝑖, 𝑗 ∈ 𝐷.

Using the numbers 𝜁𝐷 ≥ 1 and ℰ𝐶 from (4.51), we finally define the truncation
events as

Γ𝐶 ≔ { ∑
𝑖<𝑗∈𝐷

𝐴𝑖𝑗 𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗) ≤ ∑
𝑖<𝑗∈𝐷

𝑝𝑖𝑗𝜁𝐷 𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗), for all 𝐷 ∈ ℰ𝐶} . (4.52)

Loosely speaking 𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗) ≈ log(𝜌𝐶), so the above truncation event will remove all
sets 𝐶 ⊆ 𝑉 for which there exists a subset 𝐷 ∈ ℰ𝐶 with 𝑒(𝐷) > 𝜁𝐷𝔼0[𝑒(𝐷)]. Utilizing
this truncation event, we need to show that both 𝔼0[ ̃𝐿] → 1 and 𝔼0[ ̃𝐿2] → 1.

First truncated moment. Here we show that 𝔼0[ ̃𝐿] → 1. Since we are simply
considering a truncation of the likelihood, it follows from Fubini’s theorem that

𝔼0[ ̃𝐿] = 𝔼̄[𝔼0[𝟙Γ𝐶 𝐿𝐶]] = 𝔼̄[ℙ𝐶(Γ𝐶)]. (4.53)

Hence, it suffices to show that ℙ𝐶(Γ𝐶) → 1 for most 𝐶 ⊆ 𝑉. Below we will show
the slightly stronger result thatmin𝐶⊆𝑉,|𝐶|=𝑟 ℙ𝐶(Γ𝐶) → 1, which together with (4.53)
shows that 𝔼0[ ̃𝐿] → 1.
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Begin by noting that

max
𝐶⊆𝑉,|𝐶|=𝑟

max
𝑖,𝑗∈𝐶

|
|
|
𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗)
log (𝜌𝐶)

− 1
|
|
|
→ 0, as 𝑛 → ∞. (4.54)

To see this, consider

𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗)
log (𝜌𝐶)

− 1 =
log (

1−𝑝𝑖𝑗
1−𝜌𝐶𝑝𝑖𝑗

)

log(𝜌𝐶)
. (4.55)

Using Assumption 2 we see that the above converges to 0 uniformly over all 𝑖, 𝑗 ∈ 𝐶,
if 𝜌𝐶 is bounded away from 1. Otherwise, when 𝜌𝐶 → 1, we can simply use Taylor’s
theorem to obtain log(

1−𝑝𝑖𝑗
1−𝜌𝐶𝑝𝑖𝑗

)/ log(𝜌𝐶) ≤ 𝑝𝑖𝑗/(1 − 𝑝𝑖𝑗) + 3𝑝𝑖𝑗 provided 𝑝𝑖𝑗 is small

enough (e.g.,𝑝𝑖𝑗 ≤ 1/3 suffices). Hence, also in this case it follows fromAssumption 2
that (4.55) converges uniformly to 0. Loosely speaking, this means that 𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗) ≍
log(𝜌𝐶) for all sets 𝐶 ⊆ 𝑉 and 𝑖, 𝑗 ∈ 𝐶. This, together with a union bound and
Bennett’s inequality, allows us to control ℙ𝐶(Γ𝐶). Indeed,

1 − ℙ𝐶(Γ𝐶) ≤ ∑
𝐷∈ℰ𝐶

ℙ𝐶( ∑
𝑖<𝑗∈𝐷

𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗) > ∑
𝑖<𝑗∈𝐷

𝑝𝑖𝑗𝜁𝐷𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗))

≤ ∑
𝐷∈ℰ𝐶

ℙ𝐶( ∑
𝑖<𝑗∈𝐷

𝐴𝑖𝑗 > (1 + 𝑜(1))𝜁𝐷 ∑
𝑖<𝑗∈𝐷

𝑝𝑖𝑗)

≤ ∑
𝐷∈ℰ𝐶

exp (−𝔼𝐶[𝑒(𝐷)] ℎ((1 + 𝑜(1)) (
𝜁𝐷
𝜌𝐶

− 1)))

= ∑
𝐷∈ℰ𝐶

exp (−(1 + 𝑜(1))𝔼𝐶[𝑒(𝐷)] ℎ(
𝜁𝐷
𝜌𝐶

− 1)) ,

where the last step uses a property of the ℎ function, which ensures that for 𝑡 ≥ 1,
𝑥 ≥ 0 we have√𝑡ℎ(𝑥) ≤ ℎ(𝑡𝑥) ≤ 𝑡2ℎ(𝑥).

To show that this vanishes we need the following lemma, the proof of which is
mainly technical and therefore deferred to Section 4.5.6. We remark that the defini-
tion of 𝑎𝑛 in this lemma comes from the exponent in (4.56) below.

Lemma 4.4. Define the sequence 𝑎𝑛 as

𝑎𝑛 ≔ min
𝐶⊆𝑉, |𝐶|=𝑟

min
𝐷∈ℰ𝐶

((1 − 𝜀)
𝔼𝐶[𝑒(𝐷)]

|𝐷| ℎ(
𝜁𝐷
𝜌𝐶

− 1) − log ( 𝑟
|𝐷|)) .

When (4.5), Assumption 2, and either Assumption 1.1 or 1.2 hold, then 𝑎𝑛 →∞.
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Using Lemma 4.4 and grouping the sets 𝐷 ∈ ℰ𝐶 by their size |𝐷|, together with the

bound on the binomial coefficient (𝑟𝑘) ≤ ( 𝑟 e
𝑘
)
𝑘
we conclude that, for 𝑛 large enough,

1 − min
𝐶⊆𝑉,|𝐶|=𝑟

ℙ𝐶(Γ𝐶)

≤ max
𝐶⊆𝑉,|𝐶|=𝑟

∑
𝐷∈ℰ𝐶

exp (−(1 + 𝑜(1))𝔼𝐶[𝑒(𝐷)] ℎ(
𝜁𝐷
𝜌𝐶

− 1))

= max
𝐶⊆𝑉,|𝐶|=𝑟

𝑟
∑
𝑘=1

∑
𝐷∈ℰ𝐶, |𝐷|=𝑘

exp (−(1 + 𝑜(1))𝔼𝐶[𝑒(𝐷)] ℎ(
𝜁𝐷
𝜌𝐶

− 1))

= max
𝐶⊆𝑉,|𝐶|=𝑟

𝑟
∑
𝑘=1

∑
𝐷∈ℰ𝐶, |𝐷|=𝑘

1
(𝑟e/𝑘)𝑘

exp(−𝑘((1 + 𝑜(1))
𝔼𝐶[𝑒(𝐷)]

𝑘 ℎ(
𝜁𝐷
𝜌𝐶

− 1)

− log(𝑟e/𝑘)))

≤ max
𝐶⊆𝑉,|𝐶|=𝑟

𝑟
∑
𝑘=1

(
𝑟
𝑘
)
−1

∑
𝐷∈ℰ𝐶, |𝐷|=𝑘

exp(−𝑘((1 + 𝑜(1))
𝔼𝐶[𝑒(𝐷)]

𝑘 ℎ(
𝜁𝐷
𝜌𝐶

− 1)

− log(𝑟e/𝑘)))

≤
𝑟
∑
𝑘=1

(
𝑟
𝑘
)
−1

∑
𝐷⊆𝐶, |𝐷|=𝑘

exp (−𝑘 (𝑎𝑛 − 1)) (4.56)

=
𝑟
∑
𝑘=1

exp (−𝑘 (𝑎𝑛 − 1)) ≤
exp(−(𝑎𝑛 − 1))

1 − exp(−(𝑎𝑛 − 1))
→ 0,

where the final step follows because 𝑎𝑛 → ∞ by Lemma 4.4. Hence, from (4.53) we
see that 𝔼0[ ̃𝐿] → 1.

Second truncated moment. Here we show that 𝔼0[ ̃𝐿2] → 1. In other words,

𝔼0[ ̃𝐿2] = 𝔼̄⊗2 [𝔼0 [𝟙Γ𝐶1𝟙Γ𝐶2𝐿𝐶1𝐿𝐶2]] ≤ 1 + 𝑜(1),

where we recall that 𝔼̄⊗2[⋅] denotes expectation with respect to two independently
and uniformly chosen sets 𝐶1, 𝐶2 ⊆ 𝑉 of size |𝐶1| = |𝐶2| = 𝑟. Let 𝐷 = 𝐶1 ∩ 𝐶2, then
using (4.49) this becomes

𝔼0[ ̃𝐿2] = 𝔼̄⊗2 [𝔼0 [𝟙Γ𝐶1𝟙Γ𝐶2𝐿𝐶1𝐿𝐶2]]

= 𝔼̄⊗2[𝔼0[𝟙Γ𝐶1∩Γ𝐶2 exp ( ∑
𝑖<𝑗∈𝐷

𝐴𝑖𝑗 (𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) + 𝜃𝑖𝑗(𝜌𝐶2𝑝𝑖𝑗))

− Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)) − Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶2𝑝𝑖𝑗)))]],
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where we note that the sum runs only over 𝑖 < 𝑗 ∈ 𝐷 = 𝐶1 ∩ 𝐶2. The remaining
terms in the sum above (i.e., the terms 𝑖, 𝑗 ∈ 𝐶1 ∪ 𝐶2 with 𝑖 ∉ 𝐷 or 𝑗 ∉ 𝐷) can
all be factorized because the 𝐴𝑖𝑗 are independent, and all these terms have a zero
contribution because their expectation equals one.

Using the Cauchy-Schwarz inequality inside the expectation 𝔼̄⊗2[⋅], and that the
sets 𝐶1 and 𝐶2 are chosen independently, we obtain

𝔼0[ ̃𝐿2] = 𝔼̄⊗2[𝔼0[𝟙Γ𝐶1 exp ( ∑
𝑖<𝑗∈𝐷

𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))

×𝟙Γ𝐶2 exp ( ∑
𝑖<𝑗∈𝐷

𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶2𝑝𝑖𝑗) − Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶2𝑝𝑖𝑗)))]]

≤ 𝔼̄⊗2[𝔼0[𝟙Γ𝐶1 exp ( ∑
𝑖<𝑗∈𝐷

2𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))]
1/2

×𝔼0[𝟙Γ𝐶2 exp ( ∑
𝑖<𝑗∈𝐷

2𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶2𝑝𝑖𝑗) − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶2𝑝𝑖𝑗)))]
1/2

]

= 𝔼̄⊗2[𝔼0[𝟙Γ𝐶1 exp ( ∑
𝑖<𝑗∈𝐷

2𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))]].

Next, we split this expectation into two parts based on whether 𝐷 ∉ ℰ𝐶1 or 𝐷 ∈ ℰ𝐶1.
Thus we have the partition

𝔼0[ ̃𝐿2] ≤ P1 + P2,

where

P1 ≔ 𝔼̄⊗2[𝟙{𝐷∉ℰ𝐶1}𝔼0[𝟙Γ𝐶1 exp ( ∑
𝑖<𝑗∈𝐷

2𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))]],

P2 ≔ 𝔼̄⊗2[𝟙{𝐷∈ℰ𝐶1}𝔼0[𝟙Γ𝐶1 exp ( ∑
𝑖<𝑗∈𝐷

2𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))]].

Using this split, we first show that P1 ≤ 1 + 𝑜(1) and then show that P2 ≤ 𝑜(1).

Part 1: Here we show that P1 ≤ 1 + 𝑜(1). In this part we can simply ignore the
truncation events Γ𝐶1 and obtain the bound

P1 ≤ 𝔼̄⊗2[𝟙{𝐷∉ℰ𝐶1}𝔼0[ exp ( ∑
𝑖<𝑗∈𝐷

2𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))]]

≤ 𝔼̄⊗2[𝟙{𝐷∉ℰ𝐶1} exp ( ∑
𝑖<𝑗∈𝐷

Δ(1)𝑖𝑗 )],
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where

Δ(1)𝑖𝑗 ∶= log (1 +
(𝜌𝐶1𝑝𝑖𝑗 − 𝑝𝑖𝑗)2

𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)
) .

Then using log(1 + 𝑥) ≤ 𝑥 and by Assumption 2, uniformly over all 𝑖, 𝑗 ∈ 𝐷,

Δ(1)𝑖𝑗 ≤ log(1 + (1 + 𝑜(1))(𝜌𝐶1 − 1)2𝑝𝑖𝑗) ≤ (1 + 𝑜(1))(𝜌𝐶1 − 1)2𝑝𝑖𝑗.

Now, by definition of ℰ𝐶1 it follows that (1+𝑜(1))(𝜌𝐶1−1)
2 𝔼0[𝑒(𝐷)] ≤ |𝐷|(log(𝑛|𝐷|

𝑟2
)−

𝑏𝑛) for every 𝐷 ∉ ℰ𝐶1. Therefore

P1 ≤ 𝔼̄⊗2 [𝟙{𝐷∉ℰ𝐶1} exp((1 + 𝑜(1))(𝜌𝐶1 − 1)2𝔼0[𝑒(𝐷)])]

≤ 𝔼̄⊗2 [𝟙{|𝐷|≤1} + 𝟙{|𝐷|>1} exp (|𝐷| (log(𝑛|𝐷|𝑟2 ) − 𝑏𝑛))]

≤ ℙ̄⊗2(|𝐷| ≤ 1) +
𝑟
∑
𝑘=2

exp (𝑘 (log(𝑛𝑘𝑟2 ) − 𝑏𝑛)) ℙ̄⊗2(|𝐷| = 𝑘)

≤ 1 +
𝑟
∑
𝑘=2

exp (𝑘 (log(𝑛𝑘𝑟2 ) − 𝑏𝑛)) ℙ̄⊗2(|𝐷| = 𝑘). (4.57)

Note that |𝐷| = |𝐶1 ∩ 𝐶2| has a hypergeometric distribution under ℙ̄⊗2, hence

ℙ̄(|𝐷| = 𝑘) =
(𝑟𝑘)(

𝑛−𝑟
𝑟−𝑘)

(𝑛𝑟)

= ((1 + 𝑜(1)) 𝑟e𝑘
𝑟 − 𝑘
𝑛 − 𝑟)

𝑘

≤ exp (−𝑘 (log(𝑛𝑘𝑟2 ) + 𝑂(1))) . (4.58)

Plugging this into (4.57), we obtain

P1 ≤ 1 +
𝑟
∑
𝑘=2

exp (𝑘 (log(𝑛𝑘𝑟2 ) − 𝑏𝑛 − log(𝑛𝑘𝑟2 ) + 𝑂(1)))

≤ 1 +
𝑟
∑
𝑘=2

exp(𝑘(𝑂(1) − 𝑏𝑛)) ≤ 1 + 𝑜(1),

where the final step follows because 𝑏𝑛 = log log(𝑛/𝑟) → ∞.

Part 2: Here we show that P2 ≤ 𝑜(1). First, define

𝜉 ≔ 1
2
log(𝜁𝐷)
log(𝜌𝐶1)

, (4.59)
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where 𝜁𝐷 was defined in Lemma 4.3. Then, by the same reasoning as in (4.54),

max
𝐶1⊆𝑉,|𝐶1|=𝑟

max
𝐷∈ℰ𝐶1

max
𝑖,𝑗∈𝐷

|
|
|

log(𝜁𝐷)/ log(𝜌𝐶1)
𝜃𝑖𝑗(𝜁𝐷𝑝𝑖𝑗)/𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)

− 1
|
|
|
→ 0, as 𝑛 → ∞. (4.60)

Loosely speaking, this means that, 𝜉 ≍ 𝜃𝑖𝑗(𝜁𝐷𝑝𝑖𝑗)

2𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)
≤ 1 uniformly over 𝑖, 𝑗 ∈ 𝐷.

By definition of the truncation event Γ𝐶1 in (4.52), for any 𝐷 ∈ ℰ𝐶1,

∑
𝑖<𝑗∈𝐷

𝐴𝑖𝑗 𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗) ≤ ∑
𝑖<𝑗∈𝐷

𝑝𝑖𝑗𝜁𝐷 𝜃𝑖𝑗(𝜌𝐶𝑝𝑖𝑗).

Then for 𝑥 ∈ [0, 1], we obtain the bound

P2 = 𝔼̄⊗2[𝟙{𝐷∈ℰ𝐶1}𝔼0[𝟙Γ𝐶1 exp ( ∑
𝑖<𝑗∈𝐷

2𝐴𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))]]

≤ 𝔼̄⊗2[𝟙{𝐷∈ℰ𝐶1}𝔼0[ exp ( ∑
𝑖<𝑗∈𝐷

2𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)[𝑥𝐴𝑖𝑗 + (1 − 𝑥)𝜁𝐷𝑝𝑖𝑗]

− 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))]

= 𝔼̄⊗2[𝟙{𝐷∈ℰ𝐶1} exp ( ∑
𝑖<𝑗∈𝐷

Λ𝑖𝑗(2𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)𝑥)

+ (2𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗) − 2𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)𝑥)𝜁𝐷𝑝𝑖𝑗 − 2Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)))].

To obtain the best possible bound we optimize the above with respect to 𝑥. Here
it can be seen from (4.50) that each individual term in the sum is minimal when
𝑥 = 𝜃𝑖𝑗(𝜁𝐷𝑝𝑖𝑗)

2𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)
. Therefore, by (4.60) it follows that the overall optimum is attained

at 𝑥 = (1 + 𝑜(1))𝜉, where 𝜉 was defined in (4.59). Plugging this in, and using (4.60),
gives

P2 ≤ 𝔼̄⊗2[𝟙{𝐷∈ℰ𝐶1} exp( ∑
𝑖<𝑗∈𝐷

Δ(2)𝑖𝑗 )],

where

Δ(2)𝑖𝑗 ∶= (Λ𝑖𝑗(𝜃𝑖𝑗(𝜁𝐷𝑝𝑖𝑗)) − 𝜁𝐷𝑝𝑖𝑗𝜃𝑖𝑗(𝜁𝐷𝑝𝑖𝑗)) − 2(Λ𝑖𝑗(𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗)) − 𝜁𝐷𝑝𝑖𝑗𝜃𝑖𝑗(𝜌𝐶1𝑝𝑖𝑗))

= −𝐻𝑝𝑖𝑗(𝜁𝐷𝑝𝑖𝑗) − 2 (𝐻𝜌𝐶1𝑝𝑖𝑗
(𝜁𝐷𝑝𝑖𝑗) − 𝐻𝑝𝑖𝑗(𝜁𝐷𝑝𝑖𝑗))

= 𝐻𝑝𝑖𝑗(𝜁𝐷𝑝𝑖𝑗) − 2𝐻𝜌𝐶1𝑝𝑖𝑗
(𝜁𝐷𝑝𝑖𝑗), (4.61)
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where we have used (4.50) in the second equality. To relate the Kullback-Leibler
divergence 𝐻𝑝(𝑞), appearing in (4.61), to the function ℎ(𝑥) from (4.2) we need the
following lemma, the proof of which is deferred to Section 4.5.6:

Lemma 4.5. For any 0 < 𝑝 < 𝑞 < 1/2 (possibly depending on 𝑛) it follows that,

|
|
|
|
|

𝐻𝑝(𝑞)

𝑝ℎ ( 𝑞
𝑝
− 1)

− 1
|
|
|
|
|
≤ 𝑂 (𝑝 + 𝑞) ,

where𝐻𝑝(𝑞) is the Kullback-Leibler divergence between Bern(𝑝) and Bern(𝑞), and ℎ(𝑥)
is given in (4.2).

Recall that 𝜁𝐷 ≤ 𝜌2𝐶 by Lemma 4.3, and therefore max𝑖,𝑗∈𝐷 𝑝𝑖𝑗𝜁𝐷 = 𝑜(1) by As-
sumption 2. Similarly, it follows thatmax𝑖,𝑗∈𝐷 𝑝𝑖𝑗𝜌𝐶 = 𝑜(1) andmax𝑖,𝑗∈𝐷 𝑝𝑖𝑗 = 𝑜(1).
Then, using Lemma 4.5 we obtain the bounds, uniformly over 𝑖, 𝑗, ∈ 𝐷,

|
|
|
|

𝐻𝑝𝑖𝑗(𝑝𝑖𝑗𝜁𝐷)

𝑝𝑖𝑗ℎ(𝜁𝐷 − 1)
− 1

|
|
|
|
= 𝑂(𝑝𝑖𝑗(𝜁𝐷 + 1)) ≤ max

𝑖,𝑗∈𝐷
𝑂(𝑝𝑖𝑗(𝜁𝐷 + 1)) = 𝑜(1),

|
|
|
|
|

𝐻𝑝𝑖𝑗𝜌𝐶(𝑝𝑖𝑗𝜁𝐷)

𝑝𝑖𝑗𝜌𝐶ℎ(
𝜁𝐷
𝜌𝐶

− 1)
− 1

|
|
|
|
|
= 𝑂(𝑝𝑖𝑗(𝜁𝐷 + 𝜌𝐶)) ≤ max

𝑖,𝑗∈𝐷
𝑂(𝑝𝑖𝑗(𝜁𝐷 + 𝜌𝐶)) = 𝑜(1).

Using the uniform bounds above, we can express Δ(2)𝑖𝑗 from (4.61) in terms on the
function ℎ(𝑥). This gives, uniformly over 𝑖, 𝑗 ∈ 𝐷,

Δ(2)𝑖𝑗 = 𝐻𝑝𝑖𝑗(𝑝𝑖𝑗𝜁𝐷) − 2𝐻𝜌𝐶1𝑝𝑖𝑗
(𝑝𝑖𝑗𝜁𝐷)

= (1 + 𝑜(1)) (𝑝𝑖𝑗ℎ(𝜁𝐷 − 1) − 2𝜌𝐶1𝑝𝑖𝑗ℎ(
𝜁𝐷
𝜌𝐶1

− 1)) .

Therefore, for 𝐷 ∈ ℰ𝐶1, we have

1
|𝐷| ∑

𝑖<𝑗∈𝐷
Δ(2)𝑖𝑗 − log(

𝑛|𝐷|
𝑟2 )

= (1 + 𝑜(1)) 1|𝐷| ∑
𝑖<𝑗∈𝐷

[𝑝𝑖𝑗ℎ(𝜁𝐷 − 1) − 2𝜌𝐶1𝑝𝑖𝑗ℎ(
𝜁𝐷
𝜌𝐶1

− 1)] − log(
𝑛|𝐷|
𝑟2 )

= (1 + 𝑜(1)) [
𝔼0[𝑒(𝐷)]

|𝐷| ℎ(𝜁𝐷 − 1) − 2
𝔼𝐶1[𝑒(𝐷)]

|𝐷| ℎ(
𝜁𝐷
𝜌𝐶1

− 1)]

− (log( 𝑛
|𝐷|) − 2 log( 𝑟

|𝐷|)) .
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Then, by definition of 𝜁𝐷 in Lemma 4.3 and 𝑎𝑛 in Lemma 4.4, this becomes

max
𝐶1⊆𝑉, |𝐶1|=𝑟

max
𝐷∈ℰ𝐶1

1
|𝐷| ∑

𝑖<𝑗∈𝐷
Δ(2)𝑖𝑗 − log(

𝑛|𝐷|
𝑟2 )

≤ max
𝐶1⊆𝑉, |𝐶1|=𝑟

max
𝐷∈ℰ𝐶1

2
⎛
⎜⎜
⎝

log( 𝑟
|𝐷|) − (1 + 𝑜(1))

𝔼𝐶1[𝑒(𝐷)]ℎ(
𝜁𝐷
𝜌𝐶1

− 1)

|𝐷|

⎞
⎟⎟
⎠

≤ −2𝑎𝑛 → −∞.

Combining the above and grouping the sets 𝐷 ∈ ℰ𝐶1 by their size |𝐷|, together with
(4.58), we obtain

P2 ≤ 𝔼̄⊗2[𝟙{𝐷∈ℰ𝐶1} exp( ∑
𝑖<𝑗∈𝐷

Δ(2)𝑖𝑗 )] ≤
𝑟
∑
𝑘=1

exp (𝑘 (−2𝑎𝑛 + log(𝑛𝑘𝑟2 ))) ℙ̄(|𝐷| = 𝑘)

≤
𝑟
∑
𝑘=1

exp (𝑘 (−2𝑎𝑛 + log(𝑛𝑘𝑟2 ) − log(𝑛𝑘𝑟2 ) + 𝑂(1)))

≤
𝑟
∑
𝑘=1

exp(𝑘(−2𝑎𝑛 + 𝑂(1))) → 0,

where the final step follows because 𝑎𝑛 → ∞ by Lemma 4.4. This shows that P2 =
𝑜(1).

Following our steps, we conclude that𝔼0[ ̃𝐿] → 1 and𝔼0[ ̃𝐿2] = P1+P2 ≤ 1+𝑜(1),
and therefore 𝑅̄𝑛(𝑇LR) → 1. Finally, the risk of any test 𝑇𝑛 is bounded by the average
risk of the likelihood ratio test, that is 𝑅𝑛(𝑇𝑛) ≥ 𝑅̄𝑛(𝑇LR) → 1, completing the proof
of Theorem4.1.

4.5.6 Auxiliary results

In this section we provide the proofs for Lemmas 4.3, 4.4, and 4.5. To simplify this,
we first compile Assumptions 1.1 and 1.2 into a single result. This is the only place
in the proof of Theorem 4.1 where Assumptions 1.1 and 1.2 are used directly. Thus,
Theorem 4.1 can simply be extended to other assumptions, provided one can prove
Lemma 4.6 below under the new set of assumptions made.

Lemma 4.6. Let (4.5), Assumption 2, and either Assumption 1.1 or 1.2 hold. Then, for
all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟 and for all 𝐷 ∈ ℰ𝐶,

log(𝑟/|𝐷|)
log(𝑛/𝑟) (

log(𝜌𝐶) ∨ 1) = 𝑜(1). (4.62)

Furthermore, log(𝑛/𝑟)/ log(𝜌𝐶) → ∞ for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟.
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4.5.6.1 Proof of Lemma 4.6

Below we consider two cases depending on whether Assumption 1.1 or Assump-
tion 1.2 holds. We note that some of these inequalities below only hold when 𝑛 is
large enough.

Case 1 (Assumptions 2 and 1.1 hold): For all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, define 𝜂𝐶 ≥ 𝜌𝐶,
such that

|𝐶|𝑝𝐶ℎ(𝜂𝐶 − 1)
2 log(𝑛/𝑟)

= 1 − 2
3 𝜀,

where 𝜀 comes from (4.5). Further, by Assumption 1.1 (iii), we obtain

ℎ(𝜂𝐶 − 1) ≤
2 log(𝑛/𝑟)
𝑟𝑝𝐶

= 𝑜(1). (4.63)

Hence, 𝜂𝐶 → 1 and thus (𝜂𝐶 − 1)2/ℎ(𝜂𝐶 − 1) → 2 for every 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟.
Using this together with Assumption 1.1 (ii), we obtain, for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟
and for all 𝐷 ⊆ 𝐶 of size |𝐷| < 𝑟/(𝑛/𝑟)𝛾𝑛, that

(𝜌𝐶 − 1)2
𝔼0[𝑒(𝐷)]

|𝐷| ≤ (𝜂𝐶 − 1)2
|𝐷|𝑝𝐷
2 ≤ 𝛿(𝜂𝐶 − 1)2

|𝐶|𝑝𝐶
2

= (1 − 2
3 𝜀) log (

𝑛
𝑟 ) 𝛿

(𝜂𝐶 − 1)2

ℎ(𝜂𝐶 − 1)

≤ (1 − 2
3 𝜀) log (

𝑛
𝑟 ) 2𝛿 (1 + 𝑜(1))

≤ (1 − 𝜀/2) (log (
𝑛|𝐷|
𝑟2 ) − 𝑏𝑛) , (4.64)

where we recall that 𝑏𝑛 = log log(𝑛/𝑟). Furthermore, the final inequality above (in
(4.64)) follows since

2𝛿 log(𝑛/𝑟) ≤ 2𝛿 log(𝑛) ≤ log(𝑛/𝑟2) + 𝑂(1) ≤ log(𝑛|𝐷|/𝑟2) + 𝑂(1)
≤ (1 + 𝑜(1)) (log(𝑛|𝐷|/𝑟2) − 𝑏𝑛),

because 𝑟 = 𝑂(𝑛1/2−𝛿) by Assumption 1.1 (i).
Therefore, by definition of ℰ𝐶 (see (4.51)) it follows that, for all 𝐶 ⊆ 𝑉 of size

|𝐶| = 𝑟 and 𝐷 ∈ ℰ𝐶, we have |𝐷| ≥ 𝑟/(𝑛/𝑟)𝛾𝑛, or equivalently log(𝑟/|𝐷|)/ log(𝑛/𝑟) ≤
𝛾𝑛 = 𝑜(1). Furthermore, by (4.63) we have 𝜌𝐶 → 1 for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟.
Combining this, we obtain

log(𝑟/|𝐷|)
log(𝑛/𝑟) (

log(𝜌𝐶) ∨ 1) ≤
log(𝑟/|𝐷|)
log(𝑛/𝑟)

≤ 𝛾𝑛 = 𝑜(1).

This shows that (4.62) holds.
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To complete the proof, we need to show that log(𝑛/𝑟)/ log(𝜌𝐶) → ∞ for all 𝐶 ⊆
𝑉 of size |𝐶| = 𝑟. This is trivial because 𝜌𝐶 → 1, and therefore we have proved
Lemma 4.6 when Assumptions 1.1 and 2 hold.

Case 2 (Assumptions 2 and 1.2 hold): For all𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟wehave𝜌𝐶𝑝𝐶 ≤ 1,
and therefore

log(𝜌𝐶) ≤ log(1/𝑝𝐶).

Hence, by Assumption 1.2 (i) and (ii), we obtain, for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟,

log(𝑟/|𝐷|)
log(𝑛/𝑟) (

log(𝜌𝐶) ∨ 1) ≤
log(𝑟)
log(𝑛/𝑟) (

log(1/𝑝𝐶) ∨ 1) = 𝑜(1).

This shows that (4.62) holds. Similarly, for all 𝐶 ⊆ 𝑉 of size |𝐶| = 𝑟, we obtain

log(𝜌𝐶)
log(𝑛/𝑟)

≤
log(𝑟)
log(𝑛/𝑟)

log(1/𝑝𝐶) = 𝑜(1),

which shows that log(𝑛/𝑟)/ log(𝜌𝐶) → ∞.
This proves Lemma 4.6 when Assumptions 1.2 and 2 hold.

4.5.6.2 Proof of Lemma 4.3

Begin by defining ̃𝑞𝑖𝑗 by

̃𝑞𝑖𝑗 𝑝𝑖𝑗
1 − ̃𝑞𝑖𝑗 𝑝𝑖𝑗

=
(𝜌𝐶𝑝𝑖𝑗)

2

𝑝𝑖𝑗

(1 − 𝑝𝑖𝑗)

(1 − 𝜌𝐶𝑝𝑖𝑗)
2 ,

which implies that 𝜃𝑖𝑗( ̃𝑞𝑖𝑗 𝑝𝑖𝑗) = 2𝜃𝑖𝑗(𝜌𝐶 𝑝𝑖𝑗). By Assumption 2 we have 𝑝𝑖𝑗 → 0 and
𝜌2𝐶𝑝𝑖𝑗 → 0 for every 𝑖, 𝑗 ∈ 𝑉 and therefore it follows that ̃𝑞𝑖𝑗 ≍ 𝜌2𝐶.

We show below that ℎ( ̃𝑞𝑖𝑗 − 1) ≥ (2 + 𝑜(1))(𝜌𝐶 − 1)2 for all 𝑖, 𝑗 ∈ 𝐷 when 𝑛 is
large enough. Using this and the fact that 𝐷 ∈ ℰ𝐶 gives

(1 + 𝜀) 1|𝐷| 𝔼0[𝑒(𝐷)]ℎ( ̃𝑞𝑖𝑗 − 1) ≥ (2 + 𝑜(1))(1 + 𝜀)(𝜌𝐶 − 1)2
𝔼0[𝑒(𝐷)]

|𝐷|

≥ (2 + 𝑜(1))(1 + 𝜀)(1 − 𝜀/2) (log(
𝑛 |𝐷|
𝑟2 ) − 𝑏𝑛)

≥ 2(1 + 𝜀/4) (log(
𝑛 |𝐷|
𝑟2 ) − 𝑏𝑛)

≥ 2(1 + 𝜀/4) log( 𝑛
|𝐷|

|𝐷|2

𝑟2
1

log(𝑛/𝑟))
.
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Then by Lemma 4.6, for every 𝐷 ∈ ℰ𝐶, we have |𝐷|/𝑟 ≥ (𝑛/𝑟)−𝑜(1), and therefore

(1 + 𝜀) 1|𝐷| 𝔼0[𝑒(𝐷)]ℎ( ̃𝑞𝑖𝑗 − 1) ≥ 2(1 + 𝜀/4) log( 𝑛
|𝐷|

|𝐷|2

𝑟2
1

log(𝑛/𝑟))

≥ 2 log( 𝑛
|𝐷|) + 2 log(( 𝑛

|𝐷|)
𝜀/4
(
|𝐷|2

𝑟2
1

log(𝑛/𝑟))
1+𝜀/4

)

≥ 2 log( 𝑛
|𝐷|) + 2 log((𝑛𝑟 )

𝜀/4−𝑜(1)(1+𝜀/4)
)

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
→∞

≥ 2 log( 𝑛
|𝐷|).

Note that ℎ(𝑥 − 1) is continuous and increasing on 𝑥 ≥ 1. This means that, for large
enough 𝑛, there is a unique solution 𝜁𝐷 ∈ (1,min𝑖,𝑗∈𝐷 ̃𝑞𝑖𝑗) such that

(1 + 𝜀) 1|𝐷| 𝔼0[𝑒(𝐷)]ℎ(𝜁𝐷 − 1) = log( 𝑛
|𝐷|) .

Moreover, it follows that 𝜃𝑖𝑗(𝜁𝐷 𝑝𝑖𝑗) ≤ 𝜃𝑖𝑗( ̃𝑞𝑖𝑗 𝑝𝑖𝑗) = 2𝜃𝑖𝑗(𝜌𝐶 𝑝𝑖𝑗) for every 𝑖, 𝑗 ∈ 𝐷
because 𝜁𝐷 ∈ (1,min𝑖,𝑗∈𝐷 ̃𝑞𝑖𝑗).

We are left to show ℎ( ̃𝑞𝑖𝑗 − 1) ≥ (2 + 𝑜(1))(𝜌𝐶 − 1)2, which we do by considering
different cases depending on the asymptotic behavior of 𝜌𝐶 (which is sufficient by
Remark 4.1).

Case 1 (𝜌𝐶 → 1): By definition of ̃𝑞𝑖𝑗,

̃𝑞𝑖𝑗 − 1 = (𝜌𝐶 − 1) (1 +
(1 − 𝑝𝑖𝑗)𝜌2𝐶

1 − 𝑝𝑖𝑗(2𝜌𝐶 − 𝜌2𝐶)
) ≍ 2(𝜌𝐶 − 1).

Then, using the above together with ℎ(𝑥 − 1) ≍ (𝑥 − 1)2/2 as 𝑥 → 1, we obtain

ℎ ( ̃𝑞𝑖𝑗 − 1) ≍ ( ̃𝑞𝑖𝑗 − 1)2 /2 ≍ 2(𝜌𝐶 − 1)2.

Case 2 (𝜌𝐶 → 𝛼 ∈ (1,∞)): Using ̃𝑞𝑖𝑗 ≍ 𝜌2𝐶, we obtain

ℎ( ̃𝑞𝑖𝑗 − 1)
(𝜌𝐶 − 1)2

≍
ℎ(𝜌2𝐶 − 1)
(𝜌𝐶 − 1)2

≍
𝜌2𝐶 log(𝜌2𝐶) − 𝜌2𝐶 + 1

(𝜌𝐶 − 1)2

≍ 1 +
2𝜌𝐶(𝜌𝐶 log(𝜌𝐶) − 𝜌𝐶 + 1)

(𝜌𝐶 − 1)2
≥ 2 + 𝑜(1).

Case 3 (𝜌𝐶 →∞): Using ̃𝑞𝑖𝑗 ≍ 𝜌2𝐶 and ℎ(𝑥 − 1) ≍ 𝑥 log(𝑥) as 𝑥 → ∞, we obtain

ℎ( ̃𝑞𝑖𝑗 − 1)
(𝜌𝐶 − 1)2

= (1 + 𝑜(1))
̃𝑞𝑖𝑗 log( ̃𝑞𝑖𝑗)
𝜌2𝐶

≥ (2 + 𝑜(1)) log(𝜌𝐶) → ∞.
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In particular, ℎ( ̃𝑞𝑖𝑗 − 1) ≥ 2(𝜌𝐶 − 1)2 when 𝑛 is large enough.

4.5.6.3 Proof of Lemma 4.4

First note that (4.5) implies

ℎ(𝜌𝐶 − 1) ≤ (1 − 𝜀)
|𝐷| log(𝑛/|𝐷|)

𝔼0[𝑒(𝐷)]
,

and Lemma 4.3 implies

ℎ(𝜁𝐷 − 1) = 1
1 + 𝜀

|𝐷| log(𝑛/|𝐷|)
𝔼0[𝑒(𝐷)]

.

Therefore,
ℎ(𝜁𝐷 − 1)
ℎ(𝜌𝐶 − 1)

≥ 1
1 − 𝜀2 . (4.65)

To prove the lemma we consider three different cases depending on the asymp-
totic behavior of 𝜌𝐶 (any other case is handled as in Remark 4.1).

Case 1 (𝜌𝐶 → 1): From the proof of Lemma 4.3 we have 𝜁𝐷 ∈ (1,min𝑖,𝑗∈𝐷 ̃𝑞𝑖𝑗),
where ̃𝑞𝑖𝑗 ≍ 𝜌2𝐶 → 1, and therefore 𝜁𝐷 → 1. Then using ℎ(𝑥 − 1) ≍ (𝑥 − 1)2/2 as
𝑥 → 1 together with (4.65), we obtain

(𝜁𝐷 − 1)2

(𝜌𝐶 − 1)2
≍
ℎ(𝜁𝐷 − 1)
ℎ(𝜌𝐶 − 1)

≥ 1
1 − 𝜀2 .

Using this, we obtain

𝜌𝐶ℎ(
𝜁𝐷
𝜌𝐶

− 1) ≍
(𝜁𝐷 − 𝜌𝐶)

2

2𝜌𝐶
= 1

2 (𝜁𝐷 − 1)2 (1 −
𝜌𝐶 − 1
𝜁𝐷 − 1

)
2

≥ (1 + 𝑜(1)) ℎ(𝜁𝐷 − 1)(1 −√1 − 𝜀2) = Ω(1) ℎ(𝜁𝐷 − 1).

This result, together with Lemma 4.3, yields

1
|𝐷| 𝔼𝐶[𝑒(𝐷)] ℎ(

𝜁𝐷
𝜌𝐶

− 1) ≥ Ω(1) 1
|𝐷| 𝔼0[𝑒(𝐷)] ℎ (𝜁𝐷 − 1) ≥ Ω(1) log (𝑛/|𝐷|) .

Finally, by Lemma 4.6 it follows that 𝑟/|𝐷| ≤ (𝑛/𝑟)𝑜(1), and therefore

(1 − 𝜀) 1|𝐷| 𝔼𝐶[𝑒(𝐷)] ℎ(
𝜁𝐷
𝜌𝐶

− 1) − log( 𝑟
|𝐷|)

≥ Ω(1) log( 𝑛
|𝐷|) − log( 𝑟

|𝐷|) ≥ (Ω(1) − 𝑜(1)) log(𝑛𝑟 ) → ∞.
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Case 2 (𝜌𝐶 → 𝛼 ∈ (1,∞)): By (4.65) it clearly follows that 𝜌𝐶 ≤ 𝜁𝐶. Also, ℎ(𝑥−1) is
convex and has derivative log(𝑥). It follows that ℎ(𝑥−1)−ℎ(𝜌𝐶−1) ≤ (𝑥−𝜌𝐶) log(𝑥)
for 𝑥 ≥ 𝜌𝐶. Using this,

log(𝜁𝐷)(𝜁𝐷 − 𝜌𝐶) ≥ ℎ(𝜌𝐶 − 1) (
ℎ(𝜁𝐷 − 1)
ℎ(𝜌𝐶 − 1)

− 1) ≥ ℎ(𝜌𝐶 − 1) ( 1
1 − 𝜀2 − 1) .

In particular, this result implies that 𝜁𝐷 is lower bounded away from 𝜌𝐶 (i.e. 𝜁𝐷 ≥
𝜌𝐶 +Ω(1)). Now, using that ℎ(𝑥) ≥ 𝑥

2
log(𝑥 + 1) we obtain

𝜌𝐶ℎ(
𝜁𝐷
𝜌𝐶

− 1) ≥
𝜌𝐶
2 (

𝜁𝐷
𝜌𝐶

− 1) log(
𝜁𝐷
𝜌𝐶
)

≥
𝜁𝐷 − 𝜌𝐶

2 (log(𝜁𝐷) − log(𝜌𝐶))

≥ Ω(1)
𝜁𝐷 − 𝜌𝐶

2 log(𝜁𝐷)

≥ Ω(1) ℎ(𝜌𝐶 − 1),

where the last step follows from the fact that 𝜁𝐷 is lower bounded away from 𝜌𝐶. To
proceed similarly as in case 1, we need to relate ℎ(𝜁𝐷−1) to ℎ(𝜌𝐶−1). From the proof
of case 2 in Lemma 4.3 it follows that 𝜁𝐷 ≤ ̃𝑞𝑖𝑗 ≍ 𝜌2𝐶, and since 𝜌𝐶 is bounded away
from 1 it follows that ℎ(𝜌𝐶 − 1)/ℎ(𝜁𝐷 − 1) ≥ Ω(1). Therefore we conclude that

𝜌𝐶ℎ(
𝜁𝐷
𝜌𝐶

− 1) ≥ Ω(1) ℎ(𝜁𝐷 − 1).

From this point onward the proof continues as in case 1.

Case 3 (𝜌𝐶 → ∞): We have 𝜁𝐷 ≥ 𝜌𝐶 → ∞ and ℎ(𝑥 − 1) ≍ 𝑥 log(𝑥) as 𝑥 → ∞.
Therefore it follows by (4.65) that

1
1 − 𝜀2 ≤

ℎ(𝜁𝐷 − 1)
ℎ(𝜌𝐶 − 1)

≍
𝜁𝐷 log(𝜁𝐷)
𝜌𝐶 log(𝜌𝐶)

≍
𝜁𝐷
𝜌𝐶

(1 +
log(𝜁𝐷/𝜌𝐶)
log(𝜌𝐶)

) .

Hence, 𝜁𝐷/𝜌𝐶 ≥ 1 + Ω(1). Further, using 𝜁𝐷 ≤ ̃𝑞𝑖𝑗 ≍ 𝜌2𝐶, we obtain

𝜌𝐶ℎ(𝜁𝐷/𝜌𝐶 − 1)
ℎ(𝜁𝐷 − 1)

≍
𝜁𝐷 log(𝜁𝐷/𝜌𝐶) − 𝜁𝐷 + 𝜌𝐶

𝜁𝐷 log(𝜁𝐷)

=
log(𝜁𝐷/𝜌𝐶)
log(𝜁𝐷)

+ 𝑜(1)

≥ Ω(1) 1
log(𝜁𝐷)

≥ Ω(1) 1
log(𝜌𝐶)

.
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Here it was crucial to use the fact that 𝜁𝐷/𝜌𝐶 is lower bounded away from 1. Finally,
by Lemma 4.6 we obtain log(𝑟/|𝐷|) ≤ 𝑜(log(𝑛/𝑟)/ log(𝜌𝐶)), and therefore we get

(1 − 𝜀) 1|𝐷| 𝔼𝐶[𝑒(𝐷)] ℎ(
𝜁𝐷
𝜌𝐶

− 1) − log( 𝑟
|𝐷|)

≥ Ω(1) 1|𝐷| 𝔼0[𝑒(𝐷)]
ℎ(𝜁𝐷 − 1)
log(𝜌𝐶)

− log( 𝑟
|𝐷|)

≥ Ω(1)
log(𝑛/|𝐷|)
log(𝜌𝐶)

− log( 𝑟
|𝐷|)

≥ (Ω(1) − 𝑜(1))
log(𝑛/𝑟)
log(𝜌𝐶)

→ ∞,

where log(𝑛/𝑟)/ log(𝜌𝐶) → ∞ follows from Lemma 4.6.

4.5.6.4 Proof of Lemma 4.5

Define the function

𝑓𝑝(𝑞) ≔ 𝐻𝑝(𝑞) − 𝑝ℎ(
𝑞
𝑝 − 1) = (𝑞 − 𝑝) + (1 − 𝑞) log(

1 − 𝑞
1 − 𝑝) .

Then the derivatives of 𝑓𝑝(𝑞) are given by

𝜕𝑓𝑝(𝑞)
𝜕𝑞 = log(

1 − 𝑝
1 − 𝑞 ) ,

𝜕2𝑓𝑝(𝑞)
𝜕𝑞2 = 1

1 − 𝑞,
𝜕3𝑓𝑝(𝑞)
𝜕𝑞3 = 1

(1 − 𝑞)2
.

Therefore, for 0 < 𝑝 < 𝑞, a Taylor expansion of 𝑞 around 𝑝 shows that there exists
𝜉 ∈ [𝑝, 𝑞] such that

𝑓𝑝(𝑞) =
1

2(1 − 𝑝)
(𝑞 − 𝑝)2 + 1

6(1 − 𝜉)2
(𝑞 − 𝑝)3.

Now, we continue by considering two cases depending of the value of 𝑞/𝑝.

Case 1 (𝑞/𝑝 ≤ 5): Herewe use that ℎ(𝑥−1) ≥ (𝑥−1)2/4 for all 1 < 𝑥 ≤ 5. Therefore,

𝑓𝑝(𝑞)

𝑝ℎ( 𝑞
𝑝
− 1)

≤
4𝑝𝑓𝑝(𝑞)
(𝑞 − 𝑝)2

=
4𝑝

(𝑞 − 𝑝)2 [
(𝑞 − 𝑝)2

2(1 − 𝑝)
+

(𝑞 − 𝑝)3

6(1 − 𝜉)2
]

=
2𝑝
1 − 𝑝 + 2

3
𝑞 − 𝑝
(1 − 𝜉)2

≤ 𝑂(𝑝) + 𝑂(𝑞),

for some 𝜉 ∈ [𝑝, 𝑞].
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Case 2 (𝑞/𝑝 > 5): Here we use that ℎ(𝑥 − 1) ≥ (𝑥 − 1) for all 𝑥 > 5. Therefore,

𝑓𝑝(𝑞)

𝑝ℎ( 𝑞
𝑝
− 1)

≤
𝑓𝑝(𝑞)
𝑞 − 𝑝 =

𝑞 − 𝑝
2(1 − 𝑝)

+
(𝑞 − 𝑝)2

6(1 − 𝜉)2
≤ 𝑂(𝑝) + 𝑂(𝑞),

for some 𝜉 ∈ [𝑝, 𝑞].
To complete the proof, note that𝑓𝑝(𝑞) ≥ 0 and𝑝ℎ( 𝑞

𝑝
−1) ≥ 0 for all 0 < 𝑝 < 𝑞 < 1.

Therefore, it follows that

0 ≤
𝑓𝑝(𝑞)

𝑝ℎ( 𝑞
𝑝
− 1)

≤ 𝑂(𝑝 + 𝑞).

4.5.6.5 Derivation of equation (4.15)

The choice of estimator in Section 4.2.3 is based on the equality from (4.15). In
this section we give a more detailed derivation of this equality. First, observe that
∑𝑖∉𝐷𝑤𝑖 ≥ ∑𝑖∈𝐷𝑤𝑖, which is ensured by Assumption 3. To see this, note that 𝑟

𝑤max
𝑤min

≤

𝑟4/3 ∧√𝑛 𝑟 ≤ 𝑛4/5. Hence, for 𝑛 large enough,

∑
𝑖∉𝐷

𝑤𝑖 − ∑
𝑖∈𝐷

𝑤𝑖 = 𝑤min ((𝑛 − 𝑟) − 𝑟𝑤max
𝑤min

) ≥ 𝑤min((1 + 𝑜(1))𝑛 − 𝑛4/5) > 0.

Then, using that∑𝑖∉𝐷𝑤𝑖 ≥ ∑𝑖∈𝐷𝑤𝑖, we obtain

2∑𝑖∈𝐷𝑤𝑖 =√(∑𝑖∈𝑉𝑤𝑖)
2
−√(∑𝑖∉𝐷𝑤𝑖 −∑𝑖∈𝐷𝑤𝑖)

2
(4.66)

=√(∑𝑖∈𝑉𝑤𝑖)
2
−√(∑𝑖∉𝐷𝑤𝑖 +∑𝑖∈𝐷𝑤𝑖)

2
− 4∑𝑖∈𝐷∑𝑗∉𝐷𝑤𝑖𝑤𝑗

=√2𝔼0[𝑒(𝑉)] +∑𝑖∈𝑉𝑤
2
𝑖 −√2𝔼0[𝑒(𝑉)] +∑𝑖∈𝑉𝑤

2
𝑖 − 4𝔼0[𝑒(𝐷,−𝐷)],

Finally, plugging (4.66) into the definition of 𝔼0[𝑒(𝐷)], we obtain

𝔼0[𝑒(𝐷)] =
1
2(∑𝑖∈𝐷𝑤𝑖)

2
− 1
2∑𝑖∈𝐷𝑤

2
𝑖 =

1
8(2∑𝑖∈𝐷𝑤𝑖)

2
− 1
2∑𝑖∈𝐷𝑤

2
𝑖

=
(√2𝔼0[𝑒(𝑉)] + ∑

𝑖∈𝑉
𝑤2
𝑖 −√2𝔼0[𝑒(𝑉)] + ∑

𝑖∈𝑉
𝑤2
𝑖 − 4𝔼0[𝑒(𝐷,−𝐷)])

2

8 − 1
2
∑
𝑖∈𝐷

𝑤2
𝑖

=
(√𝔼0[𝑒(𝑉)] +

1
2
∑
𝑖∈𝑉
𝑤2
𝑖 −√𝔼0[𝑒(𝑉)] +

1
2
∑
𝑖∈𝑉
𝑤2
𝑖 − 2𝔼0[𝑒(𝐷,−𝐷)])

2

4 − 1
2
∑
𝑖∈𝐷

𝑤2
𝑖 .
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Chapter 5

Detecting a botnet in a
random geometric graph

Based on:
Detecting a botnet in a network,

G. Bet, K. Bogerd, R. M. Castro, and R. van der Hofstad,
Submitted.

We formalize the problem of detecting the presence of a botnet in a network as a
hypothesis testing problem where we observe a single instance of a graph. The null
hypothesis, corresponding to the absence of a botnet, is modeled as a random geo-
metric graph where every vertex is assigned a location on a 𝑑-dimensional torus and
two vertices are connected when their distance is smaller than a certain threshold.
The alternative hypothesis is similar, except that there is a small number of vertices,
called the botnet, that ignore this geometric structure and simply connect randomly
to every other vertex with a prescribed probability.

We present two tests that are able to detect the presence of such a botnet. The
first test is based on the idea that botnet vertices tend to form large isolated stars that
are not present under the null hypothesis. The second test uses the average graph
distance, which becomes significantly shorter under the alternative hypothesis. We
show that both these tests are asymptotically optimal. However, numerical simula-
tions show that the isolated star test performs significantly better than the average
distance test on networks of moderate size. Finally, we construct a robust scheme
based on the isolated star test that is also able to identify the vertices in the botnet.
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5.1 Introduction

Complex networks are often described in terms of a large number of vertices that are
connected using the same underlying probabilisticmechanism. In practice, however,
these networks might contain a small number of vertices that follow different con-
nection criteria. Examples are fake user profiles in a social network (like Facebook
or LinkedIn) or servers infected by a computer virus on the internet. We refer to
such a set of anomalous vertices as a botnet. Typically a botnet represents a poten-
tially malicious anomaly in the network, and thus it is of great practical interest to
detect its presence and, when detected, to identify the corresponding vertices. Ac-
cordingly, numerous empirical studies have analyzed botnet detection problems and
techniques, see [75, 88, 89, 129, 163] and the references therein. In this work we
look at the problem from a statistical point of view, and characterize the difficulty of
detecting a botnet based only on structural information from the observed network.

More precisely, we formalize this problem as a hypothesis testing problemwhere
we observe a single instance of a randomgraph. Under the null hypothesis, this graph
is a sample from a random geometric graph [91, 151] on 𝑛 vertices where every vertex
is assigned a location on a 𝑑-dimensional torus and two vertices are connected when
their Euclidean distance on the torus is less than a given radius. Under the altern-
ative hypothesis there is a small number 𝑘 of vertices, called the botnet, that ignore
the geometric structure and instead connect to every other vertex with a prescribed
probability. In other words, 𝑛 − 𝑘 vertices still connect based on the underlying geo-
metry, while each of the 𝑘 botnet vertices forms connections uniformly at random
with every other vertex (botnet or not). In practice, botnets are built to imitate regu-
lar nodes in the network, and sowe assume that the expected degree of every vertex is
the same under the null and alternative hypothesis. This assumption rules out trivial
scenarios where the botnet can be detected simply by looking at the edge density or
degree structure.

Our contribution. We propose two different tests to detect whether an observed
graph contains a botnet. The first test is a local test, based on the number of isolated
stars that can be observed in the given graph. For convenience we refer to this test
as the isolated star test. For a given vertex, its isolated star is the largest subset of its
neighbors such that none of them are connected to each other by an edge. Hence, an
isolated star is the largest independent set on the subgraph induced by the neighbors
of a vertex. Under the null hypothesis, none of the vertices can become a large isol-
ated star because the underlying geometry ensures that most neighbors are directly
connected. However, because the botnet vertices are connected uniformly at random
throughout the graph they are likely to become large isolated stars.

Our second test is based on graph distances in the observed graph and thus it
has a more global nature. We refer to this test as the average distance test. Under
the null hypothesis, vertices that are separated by a large Euclidean distance will also
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be separated by a large graph distance. However, under the alternative hypothesis,
the botnet vertices typically create shortcuts, making many paths much shorter. Un-
der appropriate assumptions, the effect of the shortcuts is large enough to signific-
antly decrease the average graph distance. This phenomenon was first investigated
byWatts and Strogatz [162].

Both of our methods can be used to test for the presence of a botnet. Our res-
ults show that a botnet can be detected, with high probability, when the expected
number of edges connected to all botnet vertices is diverging (i.e., when the expec-
ted vertex degree diverges or when the botnet size is unbounded). Remarkably, this
means that a single botnet vertex can be detected provided that the graph is not of
bounded average degree. We also show that this result is optimal, meaning that it is
impossible for any test to detect the presence of a botnet when the expected number
of botnet edges is bounded. We complement our theoretical results for the 𝑛 → ∞
asymptotic regime with numerical simulations that illustrate the performance of our
tests on graphs of finite size. These results empirically show that the isolated star test
performs much better than the average distance test, with the difference being more
pronounced when the dimension of the underlying geometry is large.

Related work. Recently there has been an increasing interest in the development
of statistical techniques and algorithms that exploit the structure of large complex-
network data to analyze networks more efficiently. In particular, several recent pa-
pers have studied hypothesis testing for random graph models. In [11, 12], the au-
thors consider the problem of detecting a denser subset of vertices in an Erdős-Rényi
random graph, or in an inhomogeneous random graph [28].

The setting of [47] is perhaps the closest to our setting. The authors consider the
problem of deciding whether a given graph is generated by some underlying spatial
mechanism. More specifically, in their model, the null hypothesis is an Erdős-Rényi
random graph, and this is compared to a high-dimensional random geometric graph
under the alternative. As the dimension tends to infinity, the two random graphs
become indistinguishable, and they identify how large the dimension can be so that
these models can still be distinguished.

The authors of [84] propose a test based on observed frequencies of small sub-
graphs to distinguish between an Erdős-Rényi random graph, seen as the null hypo-
thesis, and a general class of alternative models that include stochastic block models
and the configuration model. Similarly, [40] proposes a test to distinguish between
mean-field models and structured Gibbs models. Finally, [102, 134, 147] investigate
detection problems in a dynamical setting, where the goal is to detect changes in the
graph structure over time.

In this paper we specifically consider the problem of detecting a botnet in undir-
ected graphs. For instance, servers infected by a computer virus on the internet or
fake user profiles in social networks like Facebook or LinkedIn. A related and very
interesting problem is that of detecting botnets in directed networks, such as Twit-
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ter. These are heavily involved in the spread of fake news [22, 57, 129, 154]. In both
settings we are trying to identify nodes in the network that are anomalous or disrupt-
ive. However, the way these anomalous nodesmanifest themselves is rather different
than in our model.

5.2 Model formulation and results

In this section we formalize the problem of detecting a botnet in a network as a
hypothesis testing problem for graphs. We are given a single observation of a ran-
dom graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {1, … , 𝑛} is the vertex set of size |𝑉| = 𝑛 and
𝐸 ⊆ {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 ∶ 𝑖 < 𝑗} is the random set of edges. We use 𝑖 ↔ 𝑗 to indicate that
𝑖, 𝑗 ∈ 𝑉 are connected. That is, we write 𝑖 ↔ 𝑗 when (𝑖, 𝑗) ∈ 𝐸 and 𝑖 ↮ 𝑗 otherwise.
In particular, 𝐺 is a simple graph, so it does not contain any self-loops or multiple
edges.

Under the null hypothesis, denoted by 𝐻0, the observed graph 𝐺 is a realization
of a 𝑑-dimensional randomgeometric graph𝔾(𝑛, 𝑑, 𝑝) on𝑛 vertices andwith average
edge probability 𝑝. Formally, let T𝑑 ≔ [0, 1]𝑑 be the 𝑑-dimensional unit torus, with
distance function

𝐷T(𝑥, 𝑦) =√∑𝑑
𝑗=1min(|𝑥𝑗 − 𝑦𝑗|, 1 − |𝑥𝑗 − 𝑦𝑗|)

2 , for 𝑥, 𝑦 ∈ T𝑑 . (5.1)

This is simply the Euclidean distance on the unit (hyper-)cube with the ability to
“wrap around” the boundaries. We refer to T𝑑 as the embedding space. For each ver-
tex 𝑖 ∈ 𝑉, let 𝑋𝑖 be a 𝑑-dimensional vector-valued random variable uniformly distrib-
uted on T𝑑. We denote the components of this random vector by 𝑋𝑖 = (𝑋𝑖,1, … , 𝑋𝑖,𝑑)
and note that these components are independent uniform random variables on the
unit interval [0, 1].

For an edge probability𝑝, two vertices 𝑖, 𝑗 ∈ 𝑉 are connectedwhen𝐷T(𝑋𝑖, 𝑋𝑗) ≤ 𝑟,
where 𝑟 is chosen such that the average edge probability is 𝑝, that is ℙ(𝐷T(𝑋𝑖, 𝑋𝑗) ≤
𝑟) = 𝑝. In other words, 𝑟 is such that the probability of a random point𝑋𝑖 landing in a
ball of radius 𝑟 is equal to 𝑝, which gives the explicit relation 𝑝 = (√𝜋 𝑟)𝑑/Γ(𝑑/2+1),
whereΓ(⋅) denotes the gamma function. Throughout the rest of this paperwe assume
that 𝑝 → 0 as 𝑛 → ∞, so the average degree is sub-linear in the graph size 𝑛. For
further details on this model and many of its properties we refer the reader to [151].

The alternative hypothesis, denoted by 𝐻1, is similar except for a small sub-
set of vertices called the botnet. These vertices ignore the geometric structure and
simply connect to every other vertex independently with probability 𝑝. Formally, the
observed graph under the alternative hypothesis is a realization from 𝔾(𝑛, 𝑑, 𝑝; 𝑘),
which is a random geometric graph on 𝑛 − 𝑘 vertices together with a subset of ver-
tices 𝐵 ⊆ 𝑉 of size |𝐵| = 𝑘, called the botnet. That is, each pair of vertices 𝑖, 𝑗 ∈ 𝑉 ⧵𝐵
is connected precisely when 𝐷T(𝑋𝑖, 𝑋𝑗) ≤ 𝑟. The remaining vertices in the botnet 𝐵
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are connected independently and with probability 𝑝 to every other vertex in 𝑉. Note
that, by construction, the expected number of edges under the alternative hypothesis
is exactly the same as under the null hypothesis.

Another way to sample a graph 𝔾(𝑛, 𝑑, 𝑝; 𝑘) from the alternative hypothesis is
to first sample a graph 𝔾(𝑛, 𝑑, 𝑝) from the null hypothesis. Then randomly select
𝑘 vertices and delete all edges incident to them, and finally reconnect these vertices
to every other vertex independently and with probability 𝑝. An example of this is
shown in Figures 5.1 and 5.2, where we compare the model under the null and al-
ternative hypothesis in 2 dimensions. However, remember that the vertex locations
as shown in Figure 5.1 are not available for the inference problem and we can only
observewhich vertices are connected. In Figure 5.2 a representation of the graph that
does not rely on the Euclidean embedding is given, illustrating how the botnet edges
faintly “shorten” the connections between different parts of the network.

(a) Null model 𝔾(𝑛, 𝑑, 𝑝). (b) Alternative model 𝔾(𝑛, 𝑑, 𝑝; 𝑘).

Figure 5.1: Example of the model under the null and alternative model in 2 dimensions, were
we identified opposite sides of the square so that edges can “wrap-around” the sides. Note that
this representation uses the embedding of the vertices in the torus that is not available for the
inference problem. The graph contains 𝑛 = 200 vertices with 𝑘 = 4 botnet vertices and average
degree 𝑛𝑝 = 5. The botnet is highlighted in red.

(a) Null model 𝔾(𝑛, 𝑑, 𝑝). (b) Alternative model 𝔾(𝑛, 𝑑, 𝑝; 𝑘).

Figure 5.2: The same example graphs as in Figure 5.1, but drawn using a force field layout.
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General assumptions and notation. Throughout the rest of this paper all un-
specified limits are assumed to be taken as the graph size 𝑛 tends to∞. We also use
standard asymptotic notation: 𝑎𝑛 = 𝑂(𝑏𝑛)when 𝑎𝑛/𝑏𝑛 is bounded, 𝑎𝑛 = Ω(𝑏𝑛)when
𝑏𝑛 = 𝑂(𝑎𝑛), 𝑎𝑛 = Θ(𝑏𝑛) when 𝑎𝑛 = 𝑂(𝑏𝑛) and 𝑎𝑛 = Ω(𝑏𝑛), and 𝑎𝑛 = 𝑜(𝑏𝑛) when
𝑎𝑛/𝑏𝑛 → 0. Furthermore, we write 𝑎𝑛 ≍ 𝑏𝑛 to indicate that 𝑎𝑛 = (1 + 𝑜(1))𝑏𝑛, and
𝑎𝑛 ≪ 𝑏𝑛 when 𝑎𝑛 = 𝑜(𝑏𝑛), or 𝑎𝑛 ≫ 𝑏𝑛 when 𝑏𝑛 = 𝑜(𝑎𝑛). Finally, we say that a
sequence of events holds with high probability if it holds with probability tending to
1 as 𝑛 → ∞.

Given two vertices 𝑖, 𝑗 ∈ 𝑉, we write 𝑖 ↔ 𝑗 when these vertices are directly
connected by an edge, and 𝑖 ↭ 𝑗 when there exists a path between them. Further,
we assume that the dimension 𝑑 ≥ 2 remains fixed, but the edge probability 𝑝 and
the botnet size 𝑘 are allowed to depend on 𝑛, although this dependence is left implicit
in the notation. We also require that 𝑝 → 0 in such a way that 𝑛𝑝 = Ω(1) because
otherwise the resulting graphs will be such that most vertices are isolated. Finally,
we assume that the botnet size 𝑘 satisfies 1 ≤ 𝑘 ≤ 𝑜(𝑛).

5.2.1 Detecting a botnet

In this sectionwe obtain a necessary condition for detecting the presence of a planted
botnet in the asymptotic regime 𝑛 → ∞. Given an observed graph, we want to decide
whether it was sampled from𝐻0 or from𝐻1. To this end, define a test 𝑇 as a function
mapping 𝐺 to {0, 1}, where 𝑇(𝐺) = 1 indicates the null hypothesis is rejected (i.e.,
the test indicates that the graph contains a botnet), and 𝑇(𝐺) = 0 otherwise. The
worst-case risk of such a test is defined as

𝑅(𝑇) ≔ ℙ0(𝑇(𝐺) ≠ 0) + max
𝐵⊆𝑉, |𝐵|=𝑘

ℙ𝐵(𝑇(𝐺) ≠ 1) , (5.2)

where ℙ0(⋅) denotes the distribution of the random geometric graph under the null
hypothesis, andℙ𝐵(⋅) denotes the distribution of a graphwith the botnet 𝐵 ⊆ 𝑉 under
the alternative hypothesis.

Our goal is to determine when can we distinguish 𝐻0 and 𝐻1 as the graph size
𝑛 diverges. To this end we consider a sequence of tests (𝑇𝑛)∞𝑛=1 and we call such a
sequence asymptotically powerful when it has vanishing risk, that is 𝑅(𝑇𝑛) → 0 as
𝑛 → ∞. Hence, a sequence of tests is asymptotically powerful when it identifies the
underlying model correctly in the limit 𝑛 → ∞.

Before we introduce our tests, we define the threshold (in terms of the model
parameters) below which it becomes impossible for any test to be asymptotically
powerful. We later show that above this threshold the isolated star test is asymptot-
ically powerful. The average distance test is also asymptotically powerful in this re-
gime, assuming some additional technical assumptions are satisfied. This threshold
is given in terms of the parameters of the alternative model. Intuitively, it corres-
ponds to the setting where the expected number of edges connected to all botnet ver-
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tices is bounded, which happens precisely when both the average degree 𝑛𝑝 and the
botnet size 𝑘 are bounded. In this case, there is a positive probability that all botnet
vertices are isolated. When this happens it becomes impossible to reliably distinguish
the null and alternative hypothesis. This is formalized in the following theorem, the
proof of which is postponed to Section 5.5.4:

Theorem 5.1. When 𝑛𝑝𝑘 = 𝑂(1) no test can be asymptotically powerful (i.e., all tests
have risk that is strictly larger than zero).

In the rest of this section we present the two different tests that can detect the
presence of a planted botnet in the regime 𝑛𝑝𝑘 → ∞.

5.2.1.1 Isolated star test

In this section we define a test that can detect whether an observed graph contains
a planted botnet based on the presence of isolated stars. For a given vertex 𝑖 ∈ 𝑉,
let 𝑁(𝑖) = {𝑗 ∈ 𝑉 ∶ (𝑖, 𝑗) ∈ 𝐸} denote the subset of its neighbors. The isolated
star 𝑆(𝑖) ⊆ 𝑁(𝑖), at vertex 𝑖 ∈ 𝑉, is the largest independent set on the subgraph of 𝐺
induced by 𝑁(𝑖). In other words, every 𝑗 ∈ 𝑆(𝑖) is directly connected by an edge to
𝑖, and no pair of vertices in 𝑆(𝑖) are directly connected (i.e., for every 𝑗, 𝑘 ∈ 𝑆(𝑖) we
have (𝑗, 𝑘) ∉ 𝐸).

Intuitively, under 𝐻0, the observed graph does not contain large isolated stars
because of the underlying geometric structure. In fact, any isolated star under 𝐻0
cannot be larger than the kissing number 𝜅𝑑, which is the maximum number of non-
overlapping spheres of the same radius that can be placed tangent to some central
sphere in dimension 𝑑. To see this, note that our model is equivalent to the model
where every vertex is the center of a sphere of radius 𝑟/2, and two vertices are connec-
ted when their spheres touch or overlap. This means that, under 𝐻0, it is impossible
to observe an isolated star that is larger than the kissing number 𝜅𝑑. For example,
the kissing number for dimension 𝑑 = 2 is 𝜅2 = 6, so it is impossible to have more
than six vertices in a given neighborhood without some of them being connected, see
Figure 5.3 for an example.

𝑖

12

3

4 5

6

Figure 5.3: Example of an isolated star around the vertex 𝑖 ∈ 𝑉. Although the neighborhood
consists of vertices 𝑁(𝑖) = {1, … , 6}, the largest isolated star is 𝑆(𝑖) = {1, … , 5}.
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However, under the alternative hypothesis the observed graph can, and likely
will, contain large isolated stars. In particular, a botnet vertex is quite likely to have
an isolated star that is almost as large as its degree. Therefore, it will be likely to
observe a few isolated stars that are larger than the kissing number 𝜅𝑑. Hence, we
can scan the graph and compute the size of the isolated star at every vertex. Then we
reject 𝐻0 when we see an isolated star that is larger than the kissing number.

Definition 5.1. Let 𝜅𝑑 be the kissing number in dimension 𝑑. The isolated star test
rejects the null hypothesis for a given graph 𝐺 whenmax𝑖∈𝑉 |𝑆(𝑖)| > 𝜅𝑑.

Checkingwhether there exists a vertex that has an isolated star that is larger than
the kissing number can be done in 𝑂(∑𝑖∈𝑉 𝑑

𝜅2𝑑𝑖 ) time, with 𝑑𝑖 the degree of vertex
𝑖 ∈ 𝑉. This scales polynomially in the number of vertices. However, in practice this
is not feasible on large graphs, unless all vertices have quite small degree. Instead we
can use a greedy algorithm to obtain lower bounds on the size of an isolated star, for
example as described in [34]. Moreover, note that the kissing number 𝜅𝑑 depends on
the underlying dimension 𝑑, and the exact kissing number 𝜅𝑑 is unknown for many
dimensions. However, there exist good upper bounds which can be used instead.
For dimensions 𝑑 ≤ 24, the best known upper bounds can be found in [131], and for
larger dimensions one could use the upper bound 𝜅𝑑 ≪ 1.3233𝑑 [113].

Next we present the main result of this section, where we give conditions for the
isolated star test to be asymptotically powerful. The proof of this result is postponed
until Section 5.5.1.

Theorem 5.2. If 𝑛𝑝𝑘 → ∞ then the isolated star test from Definition 5.1 is asymptot-
ically powerful, meaning that it has a risk converging to zero.

5.2.1.2 Average distance test

In this section we define a test that can detect whether an observed graph contains a
planted botnet based on the difference in graph distances under the null and altern-
ative hypothesis. Here we require that 𝑝 is large enough to ensure that the graph is
connected with high probability.

Given two connected vertices 𝑖, 𝑗 ∈ 𝑉, let 𝐷G(𝑖, 𝑗) be the graph distance between
𝑖 and 𝑗. That is, 𝐷G(𝑖, 𝑗) is the length of the shortest path in the graph𝐺 that connects
𝑖 to 𝑗. Also, we define the average graph distance as

𝐷avg
G (𝐺) ≔

∑1≤𝑖<𝑗≤𝑛 𝟙{𝑖↭𝑗}𝐷G(𝑖, 𝑗)

∑1≤𝑖<𝑗≤𝑛 𝟙{𝑖↭𝑗}
. (5.3)

Under the null hypothesis, the observed graph is a random geometric graph and
therefore the average graph distance will be large. To see this, consider first the aver-
age Euclidean distance between two uniformly chosen points on the torus. This can
be lower bounded by
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𝔼0[𝐷T(𝑋1, 𝑋2)] = ∫
[0,1]𝑑

√∑𝑑
𝑗=1min(|𝑥𝑗 − 1/2|, 1 − |𝑥𝑗 − 1/2|)2 d𝑥1⋯ d𝑥𝑑 (5.4)

= ∫
[0,1]𝑑

√∑𝑑
𝑗=1|𝑥𝑗 − 1/2|2 d𝑥1⋯ d𝑥𝑑 (5.5)

≥ ∫
[0,1]𝑑

max
1≤𝑗≤𝑑

|𝑥𝑗 − 1/2| d𝑥1⋯ d𝑥𝑑 =
𝑑

2(𝑑 + 1)
, (5.6)

where the final step follows by symmetry and is simply the expectation of the max-
imum of 𝑑 independent uniform random variables on [0, 1/2]. Hence, two uniformly
chosen vertices have an expectedEuclidean distance of at least𝑑/(2𝑑+2) on the torus.
Then, consider the following lower bound on the average graph distance, which holds
with high probability

𝐷avg
G (𝐺) ≥ (

𝑛
2
)
−1

∑
1≤𝑖<𝑗≤𝑛

𝐷T(𝑋𝑖, 𝑋𝑗)
𝑟 , (5.7)

because we assumed that the graph is connected with high probability and be-
cause every edge can only connect two vertices when they are within distance 𝑟,
so 𝐷G(𝑖, 𝑗) ≥ 𝐷T(𝑋𝑖, 𝑋𝑗)/𝑟. Note that, the right-hand side of (5.7) can be seen as a
U-statistic. Therefore, using [103, Theorem 5.2], we obtain

Var0 ((
𝑛
2)
−1∑1≤𝑖<𝑗≤𝑛𝐷T(𝑋𝑖, 𝑋𝑗)) ≤

2
𝑛 Var0 (𝐷T(𝑋1, 𝑋2)) → 0 . (5.8)

Hence, Chebyshev’s inequality ensures that (𝑛2)
−1∑1≤𝑖<𝑗≤𝑛𝐷T(𝑋𝑖, 𝑋𝑗) is concentrated

around 𝔼0[𝐷T(𝑋1, 𝑋2)] with probability tending to one. Therefore, using (5.6) and
(5.7), we obtain for any 𝜀 > 0 the following with high probability lower bound

𝐷avg
G (𝐺) ≥ (1 − 𝜀)

𝔼0[𝐷T(𝑋1, 𝑋2)]
𝑟 ≥ (1 − 𝜀) 𝑑

2(𝑑 + 1)
⋅ 1𝑟 , (5.9)

As we show below, the average graph distance is significantly smaller under the
alternative hypothesis. Therefore, we consider the following test based on the average
graph distance in the observed graph:

Definition 5.2. Fix 𝜀 > 0. The average distance test rejects the null hypothesis for a
given graph 𝐺 when

𝐷avg
G (𝐺) < (1 − 𝜀) 𝑑

2(𝑑 + 1)
⋅ 1𝑟 . (5.10)

This brings us to the main result of this section, which identifies when the aver-
age distance test is asymptotically powerful. We postpone the proof of this theorem
to Section 5.5.2.
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Theorem 5.3. If 𝑛𝑝𝑘 → ∞ and 𝑝 is large enough to ensure that the subgraph induced
by all non-botnet vertices is connected with high probability, then the average distance
test from Definition 5.2 is asymptotically powerful.

Note that the assumption of connectedness implies that 𝑛𝑝 ≥ Ω(log(𝑛)) [151],
and together with the fact that 𝑘 ≥ 1 this implies 𝑛𝑝𝑘 → ∞. We include the latter
condition to be able to compare the theorem above to Theorem 5.2. The requirement
of connectivity is only a technical assumption that we make to considerably simplify
the proof. This leads us to conjecture that Theorem 5.3 also holds under the milder
condition that 𝑝 is large enough to ensure the existence of a giant component. This
is also supported by our numerical simulations.

5.2.1.3 Unknown dimension and connection radius

Computing the isolated star test requires knowledge of the dimension 𝑑 of the em-
bedding space, and the average distance test requires the knowledge of the dimension
𝑑 as well as the connection radius 𝑟. In this section we show how to estimate these
parameters from the observed graph.

To estimate the dimension𝑑weuse the clustering coefficient [59]. This is defined
as the probability that two random neighbors of a given vertex are themselves con-
nected. Under the null hypothesis, the clustering coefficient can be computed ana-
lytically and the resulting quantity only depends on the dimension 𝑑. Using [100, see
(15)], for distinct 𝑖, 𝑗, 𝑘 ∈ 𝑉, we obtain

𝐶𝑑 = ℙ0(𝑗 ↔ 𝑘 | 𝑖 ↔ 𝑗, 𝑖 ↔ 𝑘) (5.11)

= ℙ (Beta (𝑑 + 1
2 , 12) ≤

3
4) + ℙ (Beta (𝑑 + 1

2 , 𝑑 + 1
2 ) ≤ 1

4) , (5.12)

where Beta(⋅, ⋅) denotes a random variable with a beta distribution. Moreover, for a
given graph, the clustering coefficient can be estimated by

𝐶𝑑 =
∑1≤𝑖,𝑗,𝑘≤𝑛 𝟙{𝑖↔𝑗,𝑖↔𝑘,𝑗↔𝑘}

∑1≤𝑖,𝑗,𝑘≤𝑛 𝟙{𝑖↔𝑗,𝑖↔𝑘}
. (5.13)

To estimate the dimension 𝑑we can estimate the clustering coefficient𝐶𝑑 using (5.13)
and then invert the relation in (5.11) to obtain an estimate for the dimension ̂𝑑. This
method of estimating the dimension gives a consistent estimator, under the null as
well as the alternative hypothesis. This is shown in the following lemma, which we
prove in Section 5.5.5.

Lemma 5.1. Using the clustering coefficient to estimate the dimension ̂𝑑 is consistent
under both the null and alternative hypothesis, in the sense that ̂𝑑 ℙ0−→ 𝑑 and ̂𝑑 ℙ𝐵−→ 𝑑.
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The average distance test also requires knowledge of the connection radius 𝑟. To
estimate this, we use that the edge probability 𝑝 is given by

𝑝 = ℙ0(𝑖 ↔ 𝑗) =
(√𝜋𝑟)𝑑

Γ(𝑑/2 + 1)
, (5.14)

where Γ(⋅) denotes the Gamma function. For a given graph, the edge probability can
be estimated by

𝑝 = (
𝑛
2
)
−1

∑
1≤𝑖<𝑗≤𝑛

𝟙{𝑖↔𝑗} . (5.15)

To obtain an estimate of the connection radius 𝑟, we can estimate the edge prob-
ability using (5.15) and then invert the relation in (5.14), using our estimate of 𝑑, to
obtain an estimate for the connection radius ̂𝑟. This method gives a consistent estim-
ator of 𝑝 = 𝑝𝑛, as the next lemma shows.

Lemma 5.2. Using 𝑝 to estimate 𝑝 = 𝑝𝑛 is consistent both under the null and altern-
ative hypothesis, in the sense that both 𝑝/𝑝 ℙ0−→ 1 and 𝑝/𝑝 ℙ𝐵−→ 1.

Wepostpone the proof of Lemma5.2 to Section 5.5.6. Since the radius 𝑟 is given in
terms of a continuous function of 𝑝 in (5.14), this also shows that ̂𝑟/𝑟 ℙ0−→ 1 and ̂𝑟/𝑟 ℙ𝐵−→
1 by the continuous mapping theorem. Therefore, our estimate for the connection
radius ̂𝑟 is also consistent under the null and alternative hypotheses.

5.2.2 Identifying the botnet

When a test rejects the null hypothesis, wewould also like to identify the vertices that
are part of the botnet. To this end, let 𝐵 ⊆ 𝑉 be an estimator of the vertices in the
botnet. We assume that the size of the botnet |𝐵| = 𝑘 is known and that |𝐵| = 𝑘. To
measure the performance of our estimator we use the risk function

𝑅est(𝐵) ≔ 𝔼𝐵 [
|𝐵 ▵ 𝐵|
2 |𝐵| ] , (5.16)

where 𝐵 ▵ 𝐵 = ((𝑉 ⧵ 𝐵) ∩ 𝐵) ∪ (𝐵 ∩ (𝑉 ⧵ 𝐵)) is the symmetric difference between an
estimator 𝐵 of the botnet and the true botnet 𝐵. The reason for the normalization in
(5.16) is that |𝐵 ▵ 𝐵| could be unbounded, while 0 ≤ |𝐵 ▵ 𝐵|/|𝐵| ≤ 2.

We say that a method achieves exact recovery when 𝑅est(𝐵) → 0, and partial re-
covery when 𝑅est(𝐵) → 𝛼 for 𝛼 ∈ (0, 1). In other words, partial recovery corresponds
to identifying a positive proportion of the botnet vertices while exact recovery corres-
ponds to identifying the majority of the botnet vertices. Note that, partial recovery is
most interesting when the botnet size diverges. To see this, consider partial recovery
of a single botnet vertex 𝑘 = 1, in this case 𝑅est(𝐵) = ℙ𝐵(𝐵 ≠ 𝐵). That is, the bot-
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net vertex is identified correctly only a fraction of the time, and remains unidentified
otherwise.

Intuitively, our procedure identifies a botnet vertex when that vertex has a large
enough isolated star |𝑆(𝑖)|. However, in this case, non-botnet vertices could have an
isolated star that is larger than the kissing number 𝜅𝑑, because it is connected to one
or more botnet vertices. Therefore, in order to control the number of false positives,
we introduce a parameter 𝜉𝑛 > 0 to artificially increase the threshold 𝜅𝑑 that was
used when detecting the presence of a botnet. This leads to the following definition
of the isolated star estimator:

Definition 5.3. Let 𝜅𝑑 be the kissing number in dimension 𝑑. The isolated star es-
timator is

𝐵 ≔ {𝑖 ∈ 𝑉 ∶ |𝑆(𝑖)| > 𝜅𝑑 + 𝜉𝑛} , (5.17)

with 𝜉𝑛 given by

𝜉𝑛 ≔ (1 + 𝜀)
log(𝑛/𝑘)

𝒲0 (log(𝑛/𝑘)/(𝑘𝑝e))
, (5.18)

where 𝜀 > 0 is arbitrary, and𝒲0(⋅) denotes the Lambert-W function1.

Comparing this estimator with the isolated star test from Section 5.2.1.1, we see
that the detection threshold is increased by 𝜉𝑛. In fact, wehave chosen 𝜉𝑛 to be slightly
larger than the maximum number of botnet vertices that are likely to connect to any
non-botnet vertex. In other words, the addition of 𝜉𝑛 ensures that the number of false
positives remains vanishingly small.

The performance of our test depends crucially on the asymptotic behavior of the
expected number of edges 𝑛𝑝𝑘 that are connected to any botnet vertex. We will con-
cisely refer to these as botnet edges. Intuitively, when 𝑛𝑝𝑘 grows slowly, the botnet
edges do not influence the largest isolated star of a typical vertex and thus 𝜉𝑛 is a
constant. On the other hand, when 𝑛𝑝𝑘 is large, the largest isolated star of a typical
vertex grows with 𝑛 and consequently 𝜉𝑛 also increases with 𝑛.

More precisely, we show that when 𝑛𝑝𝑘 ≤ 𝑛𝛽 with 𝛽 ∈ (0, 1) our method always
achieves at least partial recovery. This corresponds to the most common situation
where there is a small botnet in a sparse graph. In this case, 𝜉𝑛 can be shown to
converge to a constant, and thus every vertex with an isolated star that is only slightly
larger than the kissing number 𝜅𝑑 is considered a botnet vertex. On the other hand,
if 𝑛𝑝𝑘 grows linearly in 𝑛 or faster, then the typical size of the largest isolated star is
significantly larger than the kissing number 𝜅𝑑 and additional technical assumptions
are required for our method to achieve at least partial recovery. We make the above
considerations precise in the main result of this section, which is presented below.

1The function 𝒲0(⋅) denotes one of the branches of the Lambert-W function. This is the solution in
𝑦 ∈ [−1,∞) of the equation 𝑥 = 𝑦e𝑦, with 𝑥 ≥ −1/e. For a detailed overview of this function and its
properties see [56].
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Theorem 5.4. Suppose that one of the following conditions holds:
(i) 𝑛𝑝𝑘 ≤ 𝑛𝛽 for some 𝛽 ∈ (0, 1),
(ii) 𝑛1−𝑜(1) ≤ 𝑛𝑝𝑘 ≤ 𝑜(𝑛 log(𝑛/𝑘)), and log(𝑛/𝑘)2/𝑛 ≤ 𝑝 ≤ log(𝑛/𝑘)−2,
(iii) 𝑛𝑝𝑘 ≥ Ω(𝑛 log(𝑛/𝑘)), and 𝑝 = 𝑜(𝑘−2/3).
Then the isolated star estimator from Definition 5.3 has exact recovery if 𝑛𝑝 → ∞, and
partial recovery otherwise.

Note that, when taken together, conditions (i)–(iii) describe all possible asymp-
totic behaviors of 𝑛𝑝𝑘, but additional technical assumptions are required when
𝑛𝑝𝑘 ≥ 𝑛1−𝑜(1). The proof of Theorem 5.4 is given in Section 5.5.3.

5.3 Simulations

We have shown that the tests introduced in the previous sections are asymptotically
powerful when 𝑛𝑝𝑘 → ∞. In this section, we study the finite sample performance
of these tests using simulations in order to compare their efficiency in practice on
relatively small graphs. As specified both our tests have type-1 error that is nearly
zero, so theywill almost always correctly identify a graphwithout a botnet. Therefore,
the focus of these simulations is on the type-2 error, which indicates how often a
planted botnet is detected when it is actually present.

For our first simulation study we estimate the graph parameters with the consist-
ent estimators described in Section 5.2.1.3 anduse these to compute the thresholds for
rejecting the null hypothesis as explained in Sections 5.2.1.1 and 5.2.1.2. The results
of this can be seen in Figure 5.4. Here we can see that both the isolated star test and
average distance test perform quite well, even on relatively small graphs, provided
that the underlying dimension is small. Nevertheless, the isolated star test performs
better than the average distance test, especially when 𝑛𝑝 is large.

Note that using the estimated model parameters as described in Section 5.2.1.3
instead of the true values could introduce some errors, which in turn could lead to
our tests being incorrectly calibrated and result in a type-1 error that is too large. To
investigate this issue we repeated the simulation with no botnet (i.e., 𝑘 = 0). Both
our tests were always correct and did not reject the null hypothesis in any of the trials.
Furthermore, the dimension was correctly estimated in all cases. So it would have
made no difference if we used the true dimension 𝑑 instead of the estimated value
̂𝑑. We did see some estimation errors for the dimension, but these were only present

when the underlying dimension 𝑑 was larger than 10. Moreover, for the average dis-
tance test we also need to estimate the connection radius. The errors introduced by
using the estimator ̂𝑟 compared to the true value 𝑟were minimal, and using 𝑟 instead
of ̂𝑟 yields essentially the same performance as in Figure 5.4.

The results in Figure 5.4 show that both the isolated star test and average dis-
tance test can perform well even on relatively small graphs. However, we see that
their performance quickly deteriorates as the dimension increases. This happens be-
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(b) Average degree 𝑛𝑝 = 30.

Figure 5.4: The power of the isolated star test and the average distance test as a function of the
dimension 𝑑. The threshold for rejecting the null hypothesis is as described in Sections 5.2.1.1
or 5.2.1.2, using estimated model parameters as described in Section 5.2.1.3. The parameters
are: graph size 𝑛 = 10000, botnet size 𝑘 = 10, and each simulation contains 5000 samples.

cause the rejection thresholds as described in Sections 5.2.1.1 and 5.2.1.2 are much
too conservative.

To better understand the properties of our two test statistics we conduct another
simulation study, this time with clairvoyant knowledge of the dimension 𝑑 and con-
nection radius 𝑟, which allows us to correctly calibrate these tests using a simple
Monte Carlomethod. That is, we sample 5000 graphs from the nullmodel (i.e., 𝑘 = 0)
and use these to compute the empirical distributions of either max𝑖∈𝑉 |𝑆(𝑖)| (for the
isolated star test) and 𝐷avg

G (𝐺) (for the average distance test). We then take an appro-
priate quantile of these empirical distributions to obtain the rejection thresholds for a
given significance level. The results of this can be seen in Figure 5.5. This shows that
the isolated star test outperforms the average distance test in most cases, especially
when the dimension 𝑑 or the average degree 𝑛𝑝 is large.

We note that the Monte Carlo method described above can also be applied when
the dimension 𝑑 or the connection radius 𝑟 are unknown, but then using the estim-
ated parameter as described in Section 5.2.1.3. However, the problem with this ap-
proach is that errors in the parameter estimation could lead to an incorrectly calib-
rated test, with a type-1 error that is possibly larger than the prescribed 𝛼.

In Figure 5.5 we can see that the isolated star test has good performance when
the dimension 𝑑 is small and the average degree 𝑛𝑝 large. The reason for this is that
the isolated star test rejects the null hypothesis when the graph contains an isolated
star that is larger than a certain rejection threshold (i.e., the kissing number 𝜅𝑑 in
Figure 5.4, or the threshold found by Monte Carlo calibration in Figure 5.5). This
rejection threshold is lower when the dimension 𝑑 is small, and the graph is more
likely to contain a large isolated star when the average degree 𝑛𝑝 is large. Hence, we
see the best performance when the dimension 𝑑 is small and the average degree 𝑛𝑝
large.
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The performance of the average distance test is also related to the dimension 𝑑
and average degree 𝑛𝑝 of the graph. To understand this, note that the botnet ver-
tices can create shortcuts between vertices that are far away in the embedding space.
When the average degree 𝑛𝑝 is large, there is a higher probability that more shortcuts
are created, which in turn decreases the average graph distance. On the other hand,
as the dimension 𝑑 increases the average graph distance among the non-botnet ver-
tices decreases, so the shortcuts created by any potential botnet vertices have a less
pronounced effect. Thus, here we also see the best performance when the dimension
𝑑 is small and the average degree 𝑛𝑝 large.

Isolated star test (5%-MC) Average distance test (5%-MC)
Isolated star test (0.1%-MC) Average distance test (0.1%-MC)
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(a) Average degree 𝑛𝑝 = 10.
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(b) Average degree 𝑛𝑝 = 30.

Figure 5.5: The power of the isolated star test and the average distance test. The threshold for
rejecting the null hypothesis is obtained by Monte Carlo calibration that ensures respectively
𝛼 = 5% and 𝛼 = 0.1% type-1 error, assuming that the dimension 𝑑 and connection radius 𝑟 are
known. The parameters are: graph size 𝑛 = 10000, botnet size 𝑘 = 10, and each simulation
contains 5000 samples.
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Figure 5.6: Histograms comparing the empirical distributions of the largest isolated star
max𝑖∈𝑉 |𝑆(𝑖)| and the average distance 𝐷

avg
G (𝐺) statistics under the null and alternative hypo-

thesis. The threshold for rejecting the null hypothesis at the 𝛼 = 0.05 significance level is
shown in red. The parameters are: graph size 𝑛 = 10000, botnet size 𝑘 = 10, average degree
𝑛𝑝 = 10, dimension 𝑑 = 7, and each histogram contains 5000 samples.



118 5. Detecting a botnet in a random geometric graph

Finally, another reasonwhy both tests haveworse performancewhen the dimen-
sion 𝑑 increases is because the effect of the underlying geometry disappears when
𝑑 → ∞, as was shown in [47]. Hence the difference between the null and alternative
hypothesis is more pronounced when the dimension 𝑑 is small.

5.4 Discussion

In this section we remark on our results and discuss some possible directions for
future work.

Different null hypothesis. Our results show that it is possible to detect an arbit-
rarily small planted botnet, provided that 𝑛𝑝𝑘 → ∞. However, these results hinge on
the underlying geometric structure of the model. Many other network models have
been developed that are based on a different geometry than the one assumed by our
model [18, 29, 42, 61, 117]. Therefore, it would be interesting to see what the effect of
the underlying geometry is, and to what extent our results can be extended to models
that have a different underlying geometric structure.

Our tests and analytical approach is fairly robust against minor changes in the
underlying geometry. For instance, our results remain true when the embedding
space is a slightly deformed torus or sphere, or the points are distributed in the em-
bedding space in a slightly non-uniform way. However, when the changes in geo-
metry are more drastic we expect the nature of the results to change. In particular,
when the geometry causes the resulting graph to become a small world we expect the
average distance test to fail, and when the geometry causes considerable inhomogen-
eity in vertex degrees we expect the isolated star test to fail.

Smaller isolated stars for higher power. The isolated star test rejects the null hy-
pothesis when the largest observed isolated star is bigger than the kissing number 𝜅𝑑,
which automatically ensures that the type-1 error is zero. However, for dimensions
𝑑 > 2, the typical largest isolated star in a random geometric graph is much smaller
than the kissing number 𝜅𝑑. For example, numerical simulations suggest that in di-
mension 𝑑 = 4, the size of the typical isolated star is smaller than 10, whereas the
kissing number is 𝜅4 = 24 [131, 139]. This suggests that, depending on the signi-
ficance level, one might use a much smaller threshold value, which would greatly
increase the power of the test.

One possible way to achieve this is to calibrate the test using a Monte Carlo ap-
proach, as we did in Section 5.3. However, this is a computationally expensive ap-
proach which could be avoided with better knowledge of the behavior of isolated
star sizes in higher dimensions.

Diverging dimension. From a theoretical perspective it would be interesting to
know whether our results can be extended to the setting where the dimension 𝑑 is
diverging together with the graph size 𝑛, similar to the problem considered in [47].
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For the isolated star test, we can use the following bound on the kissing number
𝜅𝑑 ≪ 1.3233𝑑 [113]. In this case, the same arguments as in the proof of Theorem 5.2
suggest that the isolated star test is asymptotically powerful when 1 ≪ 𝑛𝑝 ≪ 𝑛1/3
and

𝑑 ≤
log(𝑛𝑝)

log(1.3233)
. (5.19)

However, a better understanding of the distribution of isolated stars in graphs with
large underlying dimension could significantly improve this result and possibly show
that the isolated star test can still be applied even when the dimension grows much
faster than (5.19).

Estimating the botnet size. In Section 5.2.2 we show that, under some technical
conditions, it is possible to asymptotically identify all botnet vertices provided 𝑛𝑝 →
∞, and that a part of the botnet can be recovered when 𝑛𝑝 = 𝑂(1). It could be an
interesting possibility for future research to see whether it is possible to estimate the
botnet size |𝐵|. In the setting where we have exact recovery (i.e., 𝑛𝑝 → ∞) this is of
course trivial, but it would be very interesting to see how well that botnet size |𝐵| can
be estimated when 𝑛𝑝 = 𝑂(1).

5.5 Proofs

This section is devoted to the proofs of the results stated in Sections 5.2.1 and 5.2.2.

5.5.1 Proof of Theorem 5.2: Isolated star test is powerful

As explained in Section 5.2.1.1, the isolated star test has zero type-1 error (i.e., it al-
ways correctly identifies a random geometric graph without a botnet). Therefore, to
show that the isolated star test is asymptotically powerful, we must show that un-
der the alternative hypothesis, the probability of having an isolated star larger than
the kissing number 𝜅𝑑 tends to one. This is done in two steps. First, let deg𝑉⧵𝐵(𝑖)
be the non-botnet degree of a vertex 𝑖 ∈ 𝑉. That is, deg𝑉⧵𝐵(𝑖) denotes the number
of non-botnet neighbors of 𝑖. Then, we show that any botnet vertex 𝑖 ∈ 𝐵, with
deg𝑉⧵𝐵(𝑖) ≥ 𝜅𝑑 + 1, will form an isolated star of size |𝑆(𝑖)| ≥ 𝜅𝑑 + 1 with high prob-
ability. Second, we show that, with high probability, there exists a botnet vertex that
has arbitrarily large non-botnet degree.

Given a botnet vertex 𝑖 ∈ 𝐵, define the event D(𝑖) ≔ {deg𝑉⧵𝐵(𝑖) ≥ 𝜅𝑑 + 1}. Then,
conditionally on the event D(𝑖), let {𝑣1, … , 𝑣𝜅𝑑+1} be a subset of 𝜅𝑑 + 1 non-botnet
neighbors of 𝑖. We reveal these vertices one at a time. For every vertex 𝑣𝑗 revealed
this way, let 𝑞𝑗 be the probability that 𝑣𝑗 is not connected to any of the previously
revealed vertices given that all these previously revealed vertices are themselves not
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connected. For 𝑗 ∈ [𝜅𝑑 + 1] = {1, … , 𝜅𝑑 + 1} we obtain

𝑞𝑗 ≔ ℙ𝐵(𝑣𝑗 ↮ 𝑣𝑘 ∀ 𝑘 ∈ [𝑗 − 1] ||D(𝑖), 𝑣𝑘 ↮ 𝑣𝑙 ∀ 𝑘 < 𝑙 ∈ [𝑗 − 1])
= ℙ𝐵(𝐷T(𝑋𝑣𝑗, 𝑋𝑣𝑘) > 𝑟 ∀ 𝑘 ∈ [𝑗 − 1] ||D(𝑖), 𝑣𝑘 ↮ 𝑣𝑙 ∀ 𝑘 < 𝑙 ∈ [𝑗 − 1])

≥ 1 − (𝑗 − 1)𝑝 , (5.20)

where we note that, because 𝑖 ∈ 𝐵 is a botnet vertex, conditioning on the event D(𝑖)
does not affect the distribution of the vertex locations (i.e., these remain uniform ran-
dom variables on the torus). Furthermore, observe that (5.20) becomes an equality
precisely when the torus distance between every pair of previously revealed vertices
is larger than 2𝑟. Then, a lower bound on the probability that 𝑖 ∈ 𝐵 forms an isolated
star of size at least 𝜅𝑑 + 1 is given by

ℙ𝐵(|𝑆(𝑖)| ≥ 𝜅𝑑 + 1 ||D(𝑖)) ≥ ℙ𝐵(𝑣𝑗 ↮ 𝑣𝑘 ∀ 𝑗 < 𝑘 ∈ [𝜅𝑑 + 1] ||D(𝑖)) (5.21)

=
𝜅𝑑+1

∏
𝑗=1

𝑞𝑗 ≥ (1 − 𝜅𝑑𝑝)𝜅𝑑 → 1 , (5.22)

where the convergence to 1 follows because 𝑝 → 0 and 𝜅𝑑 is constant. Hence, any
botnet vertex 𝑖 ∈ 𝐵 with deg𝑉⧵𝐵(𝑖) ≥ 𝜅𝑑 + 1 will form an isolated star of size |𝑆(𝑖)| ≥
𝜅𝑑 + 1 with probability tending to one.

For the second part of the proof, we will show that there indeed exists a bot-
net vertex 𝑖 ∈ 𝐵 with deg𝑉⧵𝐵(𝑖) ≥ 𝜅𝑑 + 1. First observe that for all 𝑖 ∈ 𝐵 the non-
botnet degrees deg𝑉⧵𝐵(𝑖) are independent random variables distributed as Bin(𝑛 −
𝑘, 𝑝). Moreover, by the Stein-Chen method [52, 107], it follows that

‖
‖deg𝑉⧵𝐵(𝑖) − Poi((𝑛 − 𝑘)𝑝)‖‖TV

≤ 2𝑝 → 0 , (5.23)

where ‖⋅‖TV denotes the total variation norm. Now, because 𝑛𝑝𝑘 → ∞ and 𝑘 =
𝑜(𝑛) it follows that either (𝑛 − 𝑘)𝑝 → ∞, or (𝑛 − 𝑘)𝑝 = Θ(1) and 𝑘 → ∞. When
(𝑛−𝑘)𝑝 → ∞ every botnet vertex will eventually have non-botnet degree larger than
𝜅𝑑+1with high probability. On the other hand, if (𝑛−𝑘)𝑝 = Θ(1) then by (5.23) there
is a positive probability that deg𝑉⧵𝐵(𝑖) ≥ 𝜅𝑑 + 1, independently for each botnet vertex
𝑖 ∈ 𝐵, and since 𝑘 → ∞ there exists a botnet vertex with non-botnet degree larger
than 𝜅𝑑 + 1 with high probability. Finally, combining this with (5.22) shows that the
graph will contain an isolated star larger than 𝜅𝑑 + 1 with high probability.

5.5.2 Proof of Theorem 5.3: Average distance test is powerful

As given in (5.10), under the null hypothesis we have the high probability lower
bound

𝐷avg
G (𝐺) ≥ (1 − 𝜀) 𝑑

2(𝑑 + 1)
⋅ 1𝑟 , (5.24)
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Therefore, the average distance test has vanishing type-1 error (i.e., it will correctly
identify a geometric random graph with no botnet with high probability). To show
that this test is asymptotically powerful, we are left to show that the type-2 error
also vanishes. This is done by showing that, under the alternative, there is a botnet
vertex that creates a shortcut between most pairs of non-botnet vertices, as shown in
Figure 5.7. Using this, we show that, with high probability, the average graphdistance
is at most 𝑜(1)/𝑟, which is much smaller than the threshold in (5.10).

𝛿𝑛
𝑋𝑖

𝑋𝑖′

𝛿𝑛
𝑋𝑗

𝑋𝑗′

botnet 𝑙

Figure 5.7: Example of botnet vertex 𝑙 ∈ 𝐵 creating a shortcut between vertices 𝑖, 𝑗 ∈ 𝑉 ⧵ 𝐵.

For a non-botnet vertex 𝑖 ∈ 𝑉 ⧵ 𝐵, let 𝐵(𝑋𝑖; 𝛿𝑛) denote the ball of radius 𝛿𝑛 ≔
(𝑉𝑑 log(𝑛𝑝))−1/𝑑 around the location 𝑋𝑖, where 𝑉𝑑 ≔ 𝜋𝑑/2/Γ(𝑑/2 + 1) denotes the
volume of a 𝑑-dimensional unit ball. Also, let 𝐴𝑖 ⊆ 𝑉 ⧵ 𝐵 denote the non-botnet
vertices with location in 𝐵(𝑋𝑖; 𝛿𝑛), that is

𝐴𝑖 ≔ {𝑖′ ∈ 𝑉 ⧵ 𝐵 ∶ 𝑋𝑖′ ∈ 𝐵(𝑋𝑖; 𝛿𝑛)} . (5.25)

Note that, because 𝑘 = 𝑜(𝑛), we have

𝔼𝐵[|𝐴𝑖|] = ∑
𝑖′∈𝑉⧵𝐵

ℙ𝐵(𝑖′ ∈ 𝐴𝑖) = (𝑛 − 𝑘)𝑉𝑑𝛿𝑑𝑛 =
𝑛 − 𝑘
log(𝑛𝑝)

= (1 + 𝑜(1)) 𝑛
log(𝑛𝑝)

. (5.26)

Therefore, using the relative Chernoff bound [97, see (7)] or [132, Theorem 4.5], for
any 𝜉 > 0, we obtain

ℙ𝐵 (|𝐴𝑖| ≥ (1 − 𝜉) 𝑛
log(𝑛𝑝))

= 1 − ℙ𝐵 (|𝐴𝑖| < (1 − 𝜉) 𝑛
log(𝑛𝑝))

(5.27)

≥ 1 − ℙ𝐵(|𝐴𝑖| < (1 − 𝜉/2)𝔼[|𝐴𝑖|]) (5.28)

≥ 1 − exp (−
𝜉2 𝑛

8 log(𝑛𝑝))
→ 1 . (5.29)

Now, let 𝑙 ∈ 𝐵 be an arbitrary botnet vertex, and consider the probability that there
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exists a vertex 𝑖′ ∈ 𝐴𝑖 that connects to the botnet vertex 𝑙. This gives

ℙ𝐵(∃𝑖′ ∈ 𝐴𝑖 ∶ 𝑖′ ↔ 𝑙)

≥ ℙ𝐵 (∃𝑖′ ∈ 𝐴𝑖 ∶ 𝑖′ ↔ 𝑙 ||| |𝐴𝑖| ≥ (1 − 𝜉) 𝑛
log(𝑛𝑝))

ℙ𝐵 (|𝐴𝑖| ≥ (1 − 𝜉) 𝑛
log(𝑛𝑝))

≥ (1 + 𝑜(1)) (1 − (1 − 𝑝)(1−𝜉)𝑛/ log(𝑛𝑝))

≥ (1 + 𝑜(1)) (1 − e−𝜉𝑛𝑝/ log(𝑛𝑝)) → 1 ,

where the convergence to 1 follows because 𝑛𝑝/ log(𝑛𝑝) → ∞. To continue, we use
an existing result relating the torus distance and the graph distance [38, 65, 69, 83,
140]. Translated to our notation, this result is as follows:

Theorem (see [83, Theorem 3] or [69, Theorem 8]). There exists a constant 𝐾 inde-
pendent of 𝑛 such that for any pair of vertices in the same connected component 𝑖, 𝑗 ∈ 𝑉
with 𝐷T(𝑋𝑖, 𝑋𝑗) ≫

log(𝑛)
𝑛 𝑟𝑑−1

we obtain 𝐷G(𝑖, 𝑗) ≤ 𝐾𝐷T(𝑋𝑖, 𝑋𝑗)/𝑟 with high probability.

Define the event C ≔ {𝐺𝑉⧵𝐵 is connected}, where 𝐺𝑉⧵𝐵 denotes the subgraph in-
duced by all non-botnet vertices. Note that ℙ𝐵(C) → 1 by assumption. Then, given
the event C, the result above guarantees that there exists a path of length at most
𝑂(𝛿𝑛)/𝑟 between 𝑖 and every 𝑖′ ∈ 𝐴𝑖. Hence, for a given 𝑖 ∈ 𝑉 ⧵ 𝐵,

ℙ𝐵(𝐷G(𝑖, 𝑙) ≤ 1 + 𝑂(𝛿𝑛)/𝑟)

= ℙ𝐵(C ∩ {𝐷G(𝑖, 𝑙) ≤ 1 + 𝑂(𝛿𝑛)/𝑟}) − 𝑜(1)
≥ ℙ𝐵(C ∩ {∃𝑖′ ∈ 𝐴𝑖 ∶ 𝑖′ ↔ 𝑙,𝐷G(𝑖, 𝑖′) ≤ 𝑂(𝛿𝑛)/𝑟}) − 𝑜(1) → 1 . (5.30)

Then, by definition of 𝛿𝑛 and applying (5.30) twice, we obtain for an arbitrary pair of
non-botnet vertices 𝑖, 𝑗 ∈ 𝑉 ⧵ 𝐵 and botnet vertex 𝑙 ∈ 𝐵,

ℙ𝐵(𝐷G(𝑖, 𝑗) ≤ 𝑜(1)/𝑟)

≥ ℙ𝐵(𝐷G(𝑖, 𝑗) ≤ 2 + 2𝑂(𝛿𝑛)/𝑟)
≥ ℙ𝐵(𝐷G(𝑖, 𝑙) ≤ 1 + 𝑂(𝛿𝑛)/𝑟, 𝐷G(𝑗, 𝑙) ≤ 1 + 𝑂(𝛿𝑛)/𝑟) → 1 . (5.31)

By observing that every botnet vertex connects to several non-botnet vertices with
high probability (as explained at the end of the proof of Theorem 5.2), the above
can be strengthened to also include the botnet vertices, and show that the distance
between any given pair of vertices is at most 𝑜(1)/𝑟with high probability. This brings
us to the central result of this proof, namely that for an arbitrary pair 𝑖, 𝑗 ∈ 𝑉 it follows
that

ℙ𝐵(𝐷G(𝑖, 𝑗) ≤ 𝑜(1)/𝑟) → 1 , (5.32)

We continue by showing that the diameter of the graph 𝐺 is at most 𝑂(1)/𝑟 with
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high probability. To this end, we first consider the diameter of 𝐺𝑉⧵𝐵, this gives

ℙ𝐵( max𝑖,𝑗∈𝑉⧵𝐵
𝐷G(𝑖, 𝑗) ≤ 𝑂(1)/𝑟)

= ℙ𝐵(diam(𝐺𝑉⧵𝐵) ≤ 𝑂(1)/𝑟)
= ℙ𝐵(C ∩ {diam(𝐺𝑉⧵𝐵) ≤ 𝑂(1)/𝑟}) − 𝑜(1) → 1 , (5.33)

where the convergence to 1 follows from the theorem stated above (see also [83, Co-
rollary 6]). Similarly to what we did above, this can be extended to the diameter of 𝐺
by showing that every botnet vertex connects to at least one non-botnet vertex. Let
𝑙 ∈ 𝐵 denote an arbitrary botnet vertex, then

ℙ𝐵(min𝑖∈𝐵
deg𝑉⧵𝐵(𝑖) ≥ 1) = 1 − (ℙ𝐵(deg𝑉⧵𝐵(𝑙) = 0))𝑘 (5.34)

= 1 − ((1 − 𝑝)𝑛−𝑘)𝑘 ≥ 1 − e−(1+𝑜(1))𝑛𝑝𝑘 → 1 . (5.35)

Hence, using (5.33) and (5.35), we obtain

ℙ𝐵(max𝑖,𝑗∈𝑉
𝐷G(𝑖, 𝑗) ≤ 𝑂(1)/𝑟) = ℙ𝐵(diam(𝐺) ≤ 𝑂(1)/𝑟) → 1 . (5.36)

Finally, it follows from the dominated convergence theorem and (5.32) that
𝔼𝐵[𝟙{diam(𝐺)≤𝑂(1)/𝑟}𝐷

avg
G (𝐺)] = 𝑜(1)/𝑟. Combining this with (5.36) and Markov’s in-

equality we obtain, for any 𝑎 > 0,

ℙ𝐵 (𝐷
avg
G (𝐺) ≥ 𝑎

𝑟 ) = ℙ𝐵 (𝟙{diam(𝐺)≤𝑂(1)/𝑟}𝐷
avg
G (𝐺) ≥ 𝑎

𝑟 ) − 𝑜(1) (5.37)

≤ 𝑟
𝑎 𝔼𝐵[𝟙{diam(𝐺)≤𝑂(1)/𝑟}𝐷

avg
G (𝐺)] − 𝑜(1) → 0 . (5.38)

In particular, choosing 𝑎 = (1 − 𝜀) 𝑑
2(𝑑+1)

gives ℙ𝐵(𝐷
avg
G (𝐺) < (1 − 𝜀) 𝑑

2(𝑑+1)
1
𝑟
) → 1.

This shows that the average distance test is asymptotically powerful.

5.5.3 Proof of Theorem 5.4: Performance of the isolated star estimator

We need to show that 𝑅est(𝐵) → 0, for the estimator 𝐵 from Definition 5.3. First, we
decompose the risk 𝑅est(𝐵) as

𝑅est(𝐵) = 𝔼𝐵 [
|𝐵 ▵ 𝐵|
2|𝐵| ] =

𝔼𝐵[|(𝑉 ⧵ 𝐵) ∩ 𝐵|] + 𝔼𝐵[|𝐵 ∩ (𝑉 ⧵ 𝐵)|]
2|𝐵| (5.39)

= 1
2|𝐵| ∑𝑗∈𝐵

ℙ𝐵(𝑗 ∉ 𝐵) + 1
2|𝐵| ∑

𝑗∈𝑉⧵𝐵
ℙ𝐵(𝑗 ∈ 𝐵) (5.40)

= 1
2|𝐵| ∑𝑗∈𝐵

ℙ𝐵(|𝑆(𝑗)| ≤ 𝜅𝑑 + 𝜉𝑛) +
1
2|𝐵| ∑

𝑗∈𝑉⧵𝐵
ℙ𝐵(|𝑆(𝑗)| > 𝜅𝑑 + 𝜉𝑛) . (5.41)
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We start by showing that the second term in (5.39) vanishes. Note that, for any
non-botnet vertex 𝑖 ∈ 𝑉 ⧵𝐵, the size of its isolated star |𝑆(𝑖)| is bounded by the kissing
number 𝜅𝑑 plus the amount of botnet vertices connected to it. Therefore,

1
2|𝐵| ∑

𝑗∈𝑉⧵𝐵
ℙ𝐵(|𝑆(𝑗)| > 𝜅𝑑 + 𝜉𝑛) =

𝑛 − 𝑘
2𝑘 ℙ𝐵(|𝑆(𝑖)| > 𝜅𝑑 + 𝜉𝑛)

≤ 𝑛 − 𝑘
2𝑘 ℙ𝐵(𝑖 is connected to at least 𝜉𝑛 botnet vertices)

= 𝑛 − 𝑘
2𝑘 ℙ(Bin(𝑘, 𝑝) > 𝜉𝑛) ≤

𝑛 − 𝑘
2𝑘 (

𝑘𝑝e
𝜉𝑛

)
𝜉𝑛
→ 0 , (5.42)

where the convergence to 0 follows from the definition of 𝜉𝑛 in (5.18). In fact, the
definition of 𝜉𝑛 was chosen precisely to ensure this convergence.

To complete the proof, we analyze the first term on the right-hand side of (5.39).
Let 𝑖 ∈ 𝐵 be an arbitrary botnet vertex, then

1
|𝐵| ∑𝑗∈𝐵

ℙ𝐵(|𝑆(𝑗)| ≤ 𝜅𝑑 + 𝜉𝑛) = ℙ𝐵(|𝑆(𝑖)| ≤ 𝜅𝑑 + 𝜉𝑛)

= 1 − ℙ𝐵(|𝑆(𝑖)| > 𝜅𝑑 + 𝜉𝑛)

= 1 − ℙ𝐵(|𝑆(𝑖)| > 𝜅𝑑 + 𝜉𝑛 || deg(𝑖) > 𝜅𝑑 + 𝜉𝑛)ℙ𝐵(deg(𝑖) > 𝜅𝑑 + 𝜉𝑛) .

Now, using the same argument as in (5.22), we obtain

ℙ𝐵(|𝑆(𝑖)| > 𝜅𝑑 + 𝜉𝑛 || deg(𝑖) > 𝜅𝑑 + 𝜉𝑛)

≥
𝜅𝑑+𝜉𝑛+1

∏
𝑗=1

min{(1 − (𝜅𝑑 + 𝜉𝑛)𝑝), (1 − 𝑝)𝜅𝑑+𝜉𝑛} , (5.43)

which converges to 1 provided that 𝜉2𝑛𝑝 → 0. Combining the above, we obtain

𝑅est(𝐵) =
1
2|𝐵| ∑𝑗∈𝐵

ℙ𝐵(|𝑆(𝑗)| ≤ 𝜅𝑑 + 𝜉𝑛) +
1
2|𝐵| ∑

𝑗∈𝑉⧵𝐵
ℙ𝐵(|𝑆(𝑗)| > 𝜅𝑑 + 𝜉𝑛) (5.44)

= 1
2(1 − (1 − (𝜅𝑑 + 𝜉𝑛)𝑝)

𝜅𝑑+𝜉𝑛+1)ℙ𝐵(deg(𝑖) > 𝜅𝑑 + 𝜉𝑛)) + 𝑜(1) , (5.45)

where 𝑖 ∈ 𝐵 is an arbitrary botnet vertex. Therefore, the isolated star estimator has
exact recovery when 𝜉2𝑛𝑝 → 0 and ℙ𝐵(deg(𝑖) > 𝜅𝑑 + 𝜉𝑛) → 1, and partial recovery
when 𝜉2𝑛𝑝 → 0 andℙ𝐵(deg(𝑖) > 𝜅𝑑+𝜉𝑛) = Ω(1). To show this, we consider the three
different cases from the theorem statement.

Case (i): From our assumption it follows that 𝑘𝑝 ≤ 𝑛−𝛼 for some 𝛼 ∈ (0, 1). Recall
that𝒲0(𝑥) denotes the Lambert-W function, which can be approximated by𝒲0(𝑥) ≍
log(𝑥) when 𝑥 → ∞ [56]. We obtain 𝜉𝑛 ≍ 2 log(𝑛/𝑘)/ log(𝑛𝛼) = 𝑂(1). Hence, it
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follows that 𝜉2𝑛𝑝 → 0. Moreover,

ℙ𝐵(deg(𝑖) > 𝜅𝑑 + 𝜉𝑛) = ℙ(Bin(𝑛 − 1, 𝑝) > 𝑂(1)) (5.46)

= {
1 − 𝑜(1) if 𝑛𝑝 → ∞ ,
Ω(1) otherwise .

(5.47)

Therefore, the isolated star estimator achieves exact recovery when 𝑛𝑝 → ∞, and
partial recovery otherwise.

Case (ii): From our assumption it follows that 𝑛−𝑜(1) ≤ 𝑘𝑝 ≤ 𝑜(log(𝑛/𝑘)). Using
𝒲0(𝑥) → ∞ when 𝑥 → ∞, we obtain

𝜉𝑛 ≤
2 log(𝑛/𝑘)

𝒲0(log(𝑛/𝑘)/𝑜(log(𝑛/𝑘)))
= 𝑜(log(𝑛/𝑘)) . (5.48)

Hence, it follows that 𝜉2𝑛𝑝 ≤ 𝑜(log(𝑛/𝑘)2) log(𝑛/𝑘)−2 → 0. Moreover, from the as-
sumptions for this case it follows that 𝑛𝑝 ≫ log(𝑛/𝑘) → ∞, and therefore

ℙ𝐵(deg(𝑖) > 𝜅𝑑 + 𝜉𝑛) = ℙ(Bin(𝑛 − 1, 𝑝) > 𝜅𝑑 + 𝑜(log(𝑛/𝑘))) (5.49)
≥ ℙ(Bin(𝑛 − 1, 𝑝) > log(𝑛/𝑘)) → 1 . (5.50)

Hence, the isolated star estimator has exact recovery.

Case (iii): From our assumption it follows that 𝑘𝑝 ≥ Ω(log(𝑛/𝑘)). When 𝑘𝑝 ≫
log(𝑛/𝑘)we use that𝒲0(𝑥) ≍ 𝑥when 𝑥 → 0 [56], and obtain 𝜉𝑛 = Θ(𝑘𝑝). Otherwise,
when 𝑘𝑝 = Θ(log(𝑛/𝑘)), it also holds that 𝜉𝑛 = Θ(log(𝑛/𝑘)) = Θ(𝑘𝑝). In both cases,
it follows that 𝜉2𝑛𝑝 = Θ(𝑘2𝑝3) → 0. Furthermore, note that 𝑛𝑝 ≫ 𝑘𝑝 → ∞ and
therefore ℙ𝐵(deg(𝑖) > 𝜅𝑑 + 𝜉𝑛) = ℙ(Bin(𝑛 − 1, 𝑝) > 𝑂(𝑘𝑝)) → 1, so the isolated star
estimator achieves exact recovery.

5.5.4 Proof of Theorem 5.1: When no test is powerful

We start by considering a simpler version of the problem where the set of potential
botnet vertices 𝐵 ⊆ 𝑉 is known. Now, we no longer have a composite alternative
hypothesis, and this problem corresponds to a hypothesis test between two simple
hypotheses. That is, given a set 𝐵 ⊆ 𝑉, we consider the risk

𝑅∗(𝑇) = ℙ0(𝑇(𝐺) ≠ 0) + ℙ𝐵(𝑇(𝐺) ≠ 1) . (5.51)

Note that, for every test 𝑇, the risk 𝑅∗(𝑇) is a lower bound for the worst-case risk 𝑅(𝑇)
in (5.2). Using a result by Tsybakov [157, Proposition 2.1], for every test 𝑇 it follows
that

𝑅(𝑇) ≥ 𝑅∗(𝑇) ≥ sup
𝜏>0

{ 𝜏
𝜏 + 1 ℙ0(𝐿(𝐺) ≥ 𝜏)} , (5.52)
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where𝐿(𝑔) = ℙ𝐵(𝐺 = 𝑔)/ℙ0(𝐺 = 𝑔) is the likelihood ratio. Therefore, to show that no
test is asymptotically powerful it suffices to show thatℙ0(𝐿(𝐺) ≥ 𝜏) remains bounded
away from zero, for some 𝜏 independent of the graph size 𝑛. To this end, define the
event

A ≔ {all vertices in 𝐵 are isolated in the graph 𝐺} . (5.53)

For every graph 𝑔 such that ℙ0(𝐺 = 𝑔 |A) > 0 (i.e., a graph that could be a sample
from the null hypothesis with all vertices in 𝐵 being isolated), it follows that

ℙ0(𝐺 = 𝑔) ≤ ℙ0(𝐺𝑉⧵𝐵 = 𝑔𝑉⧵𝐵) = ℙ𝐵(𝐺𝑉⧵𝐵 = 𝑔𝑉⧵𝐵) =
ℙ𝐵(𝐺 = 𝑔)

(1 − 𝑝)(𝑛−𝑘)𝑘+𝑘(𝑘−1)/2
, (5.54)

where we have used {𝐺𝑉⧵𝐵 = 𝑔𝑉⧵𝐵} to indicate the event where the subgraphs induced
by the non-botnet vertices 𝑉 ⧵ 𝐵 are equal. Hence, for all 𝑔 in which the vertices of 𝐵
are isolated, we obtain

𝐿(𝑔) =
ℙ𝐵(𝐺 = 𝑔)
ℙ0(𝐺 = 𝑔)

≥ (1 − 𝑝)(𝑛−𝑘)𝑘+𝑘(𝑘−1)/2 = e−(1+𝑜(1))𝑛𝑝𝑘 , (5.55)

which remains strictly positive as 𝑛 → ∞ by the assumption that 𝑛𝑝𝑘 = 𝑂(1). There-
fore, we can choose 𝜏 > 0 small enough such that ℙ0(𝐿(𝐺) ≥ 𝜏 |A) = 1 for all 𝑛 large
enough. Finally, using the same reasoning as in (5.22), observe that

ℙ0(𝐿(𝐺) ≥ 𝜏) ≥ ℙ0(𝐿(𝐺) ≥ 𝜏 |A)ℙ0(A) (5.56)
= ℙ0(A) (5.57)

≥ (
𝑘−1
∏
𝑖=0

(1 − 𝑖𝑝)) (1 − 𝑘𝑝)𝑛−𝑘 (5.58)

= e−(1+𝑜(1))𝑛𝑝𝑘 . (5.59)

which remains strictly positive as 𝑛 → ∞ by the assumption that 𝑛𝑝𝑘 = 𝑂(1). Plug-
ging this into (5.52) shows that, for every test 𝑇, the risk 𝑅(𝑇) ≥ 𝑅∗(𝑇) remains
bounded away from zero, and therefore that no test can be asymptotically power-
ful.

5.5.5 Proof of Lemma 5.1: Consistency of the dimension estimator

We start by showing that 𝐶𝑑
ℙ0−→ 𝐶𝑑, and from this it follows that ̂𝑑 ℙ0−→ 𝑑 by the con-

tinuous mapping theorem and because (5.11) is continuous. Using (5.13) we obtain

𝐶𝑑(𝐺) =
𝑛−3∑1≤𝑖,𝑗,𝑘≤𝑛 𝟙{𝑖↔𝑗,𝑖↔𝑘,𝑗↔𝑘}/𝑝2

𝑛−3∑1≤𝑖,𝑗,𝑘≤𝑛 𝟙{𝑖↔𝑗,𝑖↔𝑘}/𝑝2
. (5.60)
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Here wewill show that the numerator converges in probability to𝐶𝑑, and the denom-
inator converges in probability to 1. Since the computations regarding the denomin-
ator are largely similar to those of the numerator these will be omitted for brevity,
and we will focus on the numerator.

Let 𝑋𝑖𝑗𝑘 = 𝟙{𝑖↔𝑗,𝑖↔𝑘,𝑗↔𝑘}/𝑝2 and ̄𝑋 = 𝑛−3∑1≤𝑖,𝑗,𝑘≤𝑛𝑋𝑖𝑗𝑘, then ̄𝑋 is precisely the
numerator in (5.60). Consider the first moment of ̄𝑋, this is given by

𝔼0[ ̄𝑋] = 𝑛−3 ∑
1≤𝑖,𝑗,𝑘≤𝑛

𝔼0[𝑋𝑖𝑗𝑘] (5.61)

= 𝑛−3 ∑
1≤𝑖,𝑗,𝑘≤𝑛

ℙ0(𝑖 ↔ 𝑗)ℙ0(𝑖 ↔ 𝑘)ℙ0(𝑗 ↔ 𝑘 | 𝑖 ↔ 𝑗, 𝑖 ↔ 𝑘)
𝑝2 = (1 + 𝑜(1)) 𝐶𝑑 .

Moreover, the secondmoment of ̄𝑋 can be computed by splitting between the number
of common vertices in the two triangles involved. This gives

𝔼0[ ̄𝑋2] = 𝑛−6 ∑
1≤𝑖,𝑗,𝑘,𝑖′,𝑗′,𝑘′≤𝑛

𝔼0[𝑋𝑖𝑗𝑘 𝑋𝑖′𝑗′𝑘′] (5.62)

= 𝑛−6 ∑
1≤𝑖,𝑗,𝑘,𝑖′,𝑗′,𝑘′≤𝑛

distinct

𝔼0[𝑋𝑖𝑗𝑘 𝑋𝑖′𝑗′𝑘′] + 3 𝑛−6 ∑
1≤𝑖,𝑗,𝑘,𝑗′,𝑘′≤𝑛

distinct

𝔼0[𝑋𝑖𝑗𝑘 𝑋𝑖𝑗′𝑘′] (5.63)

+ 3𝑛−6 ∑
1≤𝑖,𝑗,𝑘,𝑘′≤𝑛

distinct

𝔼0[𝑋𝑖𝑗𝑘 𝑋𝑖𝑗𝑘′] + 𝑛−6 ∑
1≤𝑖,𝑗,𝑘≤𝑛
distinct

𝔼0[𝑋2
𝑖𝑗𝑘] (5.64)

= (1 + 𝑜(1)) [𝐶2
𝑑 + 3

𝐶2
𝑑
𝑛 + 3

𝐶2
𝑑

𝑛2𝑝 +
𝐶𝑑
𝑛3𝑝2 ] = (1 + 𝑜(1)) 𝐶2

𝑑 , (5.65)

where the final step follows from the assumption that 𝑝 ≥ Ω(1/𝑛). Hence, Var0( ̄𝑋) =
𝔼0[ ̄𝑋2] − 𝔼0[ ̄𝑋]2 = 𝑜(1), and therefore it follows by Chebyshev’s inequality that
̄𝑋 ℙ0−→ 𝐶𝑑. This shows that the numerator of (5.60) converges in probability to 𝐶𝑑 and

the denominator of (5.60) converges in probability to 1, so we have𝐶𝑑
ℙ0−→ 𝐶𝑑. Finally,

it follows from the continuous mapping theorem that ̂𝑑 ℙ0−→ 𝑑, and we conclude that
our estimator for the dimension is consistent under the null hypothesis.

Under the alternative hypothesis, the proof is largely similar. Because the botnet
size 𝑘 = 𝑜(𝑛) is small, it can be seen that the first and secondmoment of ̄𝑋 converge to
the same values, and therefore ̄𝑋 ℙ𝐵−→ 𝐶𝑑. Finally, we can again apply the continuous
mapping theorem to show that our estimator for the dimension is consistent under
the alternative hypothesis.



128 5. Detecting a botnet in a random geometric graph

5.5.6 Proof of Lemma 5.2: Consistency of the connection probability estim-
ator

We start by showing that 𝑝/𝑝 ℙ0−→ 1. Using the estimator 𝑝 from (5.15) it follows
directly that 𝔼0[𝑝/𝑝] = 1. Therefore, we are left to compute

𝔼0[(𝑝/𝑝)2] = (
𝑛
2
)
−2

∑
1≤𝑖<𝑗≤𝑛
1≤𝑖′<𝑗′≤𝑛

𝔼0 [
𝟙{𝑖↔𝑗}

𝑝
𝟙{𝑖′↔𝑗′}

𝑝 ] (5.66)

= (
𝑛
2
)
−2
([(

𝑛
2
)
2
− (

𝑛
2
)] + (

𝑛
2
) 1𝑝) (5.67)

= (1 − (
𝑛
2
)
−1
+ (

𝑛
2
)
−1 1

𝑝) = 1 + 𝑜(1) , (5.68)

where we obtained the second equality by splitting between the case where 𝑖 ≠ 𝑖′ and
𝑗 ≠ 𝑗′, and the case where 𝑖 = 𝑖′ and 𝑗 = 𝑗′. Moreover, the final step followed from
the assumption 𝑝 ≥ Ω(1/𝑛). Therefore, it follows that Var0(𝑝/𝑝) = 𝔼0[(𝑝/𝑝)2] −
𝔼0[𝑝/𝑝]

2 = 𝑜(1), and hence 𝑝/𝑝 ℙ0−→ 1 by Chebyshev’s inequality. Moreover, for any
distinct triplet 𝑖, 𝑗, 𝑘 ∈ 𝑉,

𝑝 = ℙ0(𝑖 ↔ 𝑗) = ℙ𝐵(𝑖 ↔ 𝑗) , 𝑝2 = ℙ0(𝑖 ↔ 𝑗, 𝑖 ↔ 𝑘) = ℙ𝐵(𝑖 ↔ 𝑗, 𝑖 ↔ 𝑘) . (5.69)

Hence, performing the above computations under themeasureℙ𝐵 shows that𝑝/𝑝
ℙ𝐵−→

1 as well.



Chapter 6

Changepoint detection in the
preferential attachment model

Based on:
Detecting a late changepoint in the preferential attachment model,

G. Bet, K. Bogerd, R. M. Castro, and R. van der Hofstad,
In preparation.

Motivated by the problem of detecting an anomalous evolution of a network,
we consider the preferential attachment random graph model with a time-dependent
attachment function. We cast this problem as a hypothesis testing problem where
the null hypothesis is a preferential attachment model with a constant affine attach-
ment parameter 𝛿0, and the alternative hypothesis is a preferential attachmentmodel
where the affine attachment parameter changes from 𝛿0 to 𝛿1 at an unknown change-
point time 𝜏𝑛. We focus on the regime where the changepoint may only occur rather
late in time (i.e., 𝜏𝑛 = 𝑛−𝑐𝑛𝛾 with 𝑐 ≥ 0 and 𝛾 ∈ (0, 1)). We present an asymptotically
powerful test that is able to distinguish between the null and alternative hypothesis
when 𝛾 > 1/2. Our test is based on precise estimates of the expected number of
minimal degree vertices in the alternative model together with their fluctuations.

6.1 Introduction

One of the most celebrated successes of complex network theory has been the recog-
nition that simple dynamical random graph models with local connection rules are
able to successfully explain important macroscopic features observed in real-world
networks. The preferential attachment model and its generalizations are perhaps
the most successful of such models. Barabási and Albert [16] proposed this model to
explain the occurrence of power-law degree sequences, which are often observed in
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real-world networks such as the world wide web [4, 44] or internet [71], biological
networks [72, 110, 130], or even in collaboration networks of movie actors [7, 86].
Furthermore, the typical distance between vertices in the preferential attachment
model is small. This is called the small-world phenomenon, see [161, 162].

The preferential attachment model considers the entire evolution of a network
by adding vertices one by one using a simple preferential attachment rule. Inform-
ally, as new vertices are added to the graph, they are more likely to attach to vertices
that already have a large degree, hence further increasing the degree of these ver-
tices. Accordingly, the degree of the oldest vertices grows as new vertices attach to
the graph. On the other hand, the degree of the last few vertices to join is typically
quite small. Since its introduction in [16], the preferential attachment model has re-
ceived a tremendous amount of attention thanks to its early explanatory successes.
The structural properties of the model are investigated formally in [32, 33], see also
[104, 105] for a detailed overview on this model and many of its properties.

In general, however, not all vertices in a network follow the same connection
criterion. For example, some major event could cause a change in the subsequent
evolution of the network. To model this, we consider here a time-inhomogeneous
affine preferential attachment model, where a new vertex 𝑣𝑡 that enters the graph at
time 1 ≤ 𝑡 ≤ 𝑛 connects to a pre-existing vertexwith degree 𝑘with probability propor-
tional to 𝑓(𝑘) = 𝑘+𝛿(𝑡). We consider the hypothesis testing problemwhere 𝛿(𝑡) = 𝛿0
remains constant under the null hypothesis, whereas under the alternative the affine
attachment parameter 𝛿(𝑡) changes from 𝛿0 to 𝛿1 at an unknown changepoint 𝜏𝑛. We
focus on the regime where the changepoint may only occur late (i.e., 𝜏𝑛 = 𝑛 − 𝑐𝑛𝛾
with 𝑐 ≥ 0 and 𝛾 ∈ (0, 1)). This is explained in more detail in Section 6.2.

Related work. Our work nicely complements earlier results [14, 21] that focused
on the detection of a changepoint in the setting of preferential attachment trees,
where every vertex that enters the graph connects to 𝑚 = 1 other edge. There are
also some differences. First, our results consider the more general case of preferen-
tial attachment graphs, where vertices may enter the graph with 𝑚 ≥ 1 edges. The
other difference between is that we focus on a late changepoint 𝜏𝑛 = 𝑛−𝑐𝑛𝛾, whereas
[14, 21] focus on a changepoint that happens at a linear time 𝑂(𝑛). Thus, in our set-
ting a much smaller number of vertices enter the graph after changepoint, making it
harder to detect. We believe that our results are robust enough to be easily extended
to the setting of a linear changepoint as well.

Although different from this work, there has been much interest in understand-
ing and detecting the effect of an initial seed graph on the evolution of the preferential
attachment model [46, 48, 49, 58, 123]. Here one starts with a given initial graph at
time 𝑡 = 1 and then grows the remaining graph according to the preferential attach-
ment (or uniform attachment). The goal is then to estimate the initial graph based
on an observation of the graph at a much later time.

Finally, changepoint detection has also received much attention in the setting of
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dynamic stochastic block models [23, 152, 159, 160, 164]. There the aim is primarily
to understand the evolution of the network’s community structure.

6.2 Model and results

We formalize the problem of detecting a changepoint in a dynamical network as a
hypothesis testing problem on random graphs. We first explain themodel that we use
in general, and then define concrete versions of thismodel for the null and alternative
hypothesis.

We are given a single observation of a random graph 𝐺𝑛 = (𝑉𝑛, 𝐸𝑛) with vertex
set 𝑉𝑛 ≔ {𝑣0, … , 𝑣𝑛} and 𝐸𝑛 ⊆ {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉𝑛} is the random set of edges. The
observed graph 𝐺𝑛 is then a sample from the affine preferential attachment model
with parameters𝑚 ≥ 1 and 𝛿(𝑡) > −𝑚. This model actually generates a sequence of
graphs (𝐺𝑡)𝑛𝑡=1, from which we observe only the final snapshot 𝐺𝑛.

There exist various versions of the preferential attachmentmodel, each following
slightly different conventions for adding new vertices. Here we consider the follow-
ing model. The first graph 𝐺1, also called the seed graph, consists of two vertices 𝑣0
and 𝑣1 connected by 𝑚 edges. For 2 ≤ 𝑡 ≤ 𝑛, the graph 𝐺𝑡 is constructed from 𝐺𝑡−1
by adding a vertex 𝑣𝑡 with 𝑚 new edges one by one and with intermediate updat-
ing of degrees. To this end, define 𝐺𝑡,0 as the graph 𝐺𝑡−1 together with the vertex 𝑣𝑡
without any edges, and let 𝐺𝑡,1, 𝐺𝑡,2, … , 𝐺𝑡,𝑚 be the intermediate graphs for each of
the 𝑚 edges emanating from 𝑣𝑡. For 1 ≤ 𝑖 ≤ 𝑚, the graph 𝐺𝑡,𝑖 is constructed from
𝐺𝑡,𝑖−1 by connecting 𝑣𝑡 to a randomly selected vertex 𝑣𝑠 ∈ {𝑣0, … , 𝑣𝑡−1}. This is where
the parameter 𝛿(𝑡) comes in, because the conditional probability given𝐺𝑡,𝑖−1 that the
𝑖th edge of 𝑣𝑡 connects to 𝑣𝑠 is given by

ℙ(𝑣𝑡,𝑖 ↔ 𝑣𝑠 | 𝐺𝑡,𝑖−1) =
deg𝑣𝑠(𝐺𝑡,𝑖−1) + 𝛿(𝑡)

∑𝑡−1
𝑗=0(deg𝑣𝑗(𝐺𝑡,𝑖−1) + 𝛿(𝑡))

, (6.1)

where deg𝑣𝑠(𝐺𝑡,𝑖−1) denotes the degree of 𝑣𝑠 in 𝐺𝑡,𝑖−1. After all 𝑚 edges have been
added to the vertex 𝑣𝑡 we obtain the graph 𝐺𝑡 = 𝐺𝑡,𝑚.

The model above is rather general, as there are almost no restrictions on the
function 𝛿(𝑡). For our hypothesis testing problem we will consider this is either a
constant or a step function.

Under the null hypothesis, denoted by𝐻0, the observed graph𝐺𝑛 = 𝐺(𝛿0)
𝑛 is gener-

ated according the the preferential attachmentmodel with fixed parameter 𝛿(𝑡) = 𝛿0.
Thus, the attachment rule from (6.1) becomes

ℙ(𝑣𝑡,𝑖 ↔ 𝑣𝑠 | 𝐺
(𝛿0)

𝑡,𝑖−1) =
deg𝑣𝑠(𝐺

(𝛿0)

𝑡,𝑖−1) + 𝛿0
2(𝑡 − 1)𝑚 + 𝑡𝛿0 + (𝑖 − 1)

, (6.2)

where 𝑣𝑠 ∈ {𝑣0, … , 𝑣𝑡−1}. Note that this is a special case of the preferential attachment
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model from [60, 87], where every vertex enters the graph with exactly𝑚 edges.
Under the alternative hypothesis, denoted by𝐻1, the observed graph𝐺𝑛 = 𝐺(𝛿0,𝛿1)

𝑛
is similar except the parameter 𝛿(𝑡) changes from 𝛿0 to 𝛿1 for a small number of ver-
tices at the very end of the process. Specifically, for a graph of size 𝑛, the changepoint
happens at time 𝜏𝑛 = 𝑛 − 𝑐𝑛𝛾, where 𝛾 ∈ (0, 1) and 𝑐 ∈ (0,∞) are fixed constants.
That is, 𝛿(𝑡) is given by 𝛿(𝑡) = 𝟙{𝑡<𝜏𝑛}𝛿0 + 𝟙{𝑡≥𝜏𝑛}𝛿1. In this case, the attachment rule
from (6.1) becomes

ℙ(𝑣𝑡,𝑖 ↔ 𝑣𝑠 | 𝐺
(𝛿0,𝛿1)

𝑡,𝑖−1) =
⎧
⎪

⎨
⎪
⎩

deg𝑣𝑠(𝐺
(𝛿0,𝛿1)

𝑡,𝑖−1) + 𝛿0
2(𝑡 − 1)𝑚 + 𝑡𝛿0 + (𝑖 − 1)

, if 𝑡 < 𝜏𝑛,

deg𝑣𝑠(𝐺
(𝛿0,𝛿1)

𝑡,𝑖−1) + 𝛿1
2(𝑡 − 1)𝑚 + 𝑡𝛿1 + (𝑖 − 1)

, if 𝑡 ≥ 𝜏𝑛.

(6.3)

To summarize, the graph under the null hypothesis is denoted by𝐺𝑛 = 𝐺(𝛿0)
𝑛 , and

the graph with a changepoint under the alternative hypothesis is denoted by 𝐺𝑛 =
𝐺(𝛿0,𝛿1)
𝑛 . Both thesemodels also depend on the parameter𝑚, although this dependence

is left implicit to avoid notational clutter. Furthermore, the total number of edges in
a graph of size 𝑛 is𝑚𝑛, and thus𝑚 can be considered known.

Assumptions and notation. Our primary goal is to characterize the asymptotic
distinguishability between the null and alternative hypothesis in the asymptotic re-
gime where 𝑛 tends to∞. Throughout this paper, when limits are unspecified they
are taken as the graph size 𝑛 → ∞. The other parameters 𝑚, 𝛿0, 𝛿1, 𝑐, and 𝛾 are as-
sumed to remain constant. We also use standard asymptotic notation as defined in
Section 1.5.

6.2.1 Minimal degree test

In this section we present a test that can distinguish between the null and alternative
hypotheses based on just the final snapshot of the graph 𝐺𝑛. Here we do not know
the vertex labels and therefore do not know which vertices entered the graph early
or which entered the graph late. The goal of our test is to determine whether the
last 𝑛 − 𝜏𝑛 = 𝑐𝑛𝛾 vertices that entered the graph had parameter 𝛿0 or 𝛿1. To this
end, define a test 𝑇 as a function mapping the observed graph 𝐺𝑛 to {0, 1}, where
𝑇(𝐺𝑛) = 1 indicates that the null hypothesis is rejected (i.e., the test indicates that
the graph contains a changepoint), and 𝑇(𝐺𝑛) = 0 otherwise.

To define our test we first need some additional notation. Let 𝑁𝑘(𝐺𝑛) be the
number of vertices of degree 𝑘 in the graph 𝐺𝑛, that is

𝑁𝑘(𝐺𝑛) ≔
𝑛
∑
𝑡=1

𝟙{deg𝑣𝑡(𝐺𝑛)=𝑘}, (6.4)

where we recall that deg𝑣𝑡(𝐺𝑛) denotes the degree of 𝑣𝑡 in 𝐺𝑛. For our model, under
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both the null and alternative hypotheses, 𝑁𝑘(𝐺𝑛) = 0 for 𝑘 < 𝑚, and𝑁𝑚(𝐺𝑛) denotes
the number of vertices with minimal degree in 𝐺𝑛. The latter quantity will plays a
crucial role in our test.

It iswell-known that in the classical preferential attachmentmodel𝐺(𝛿0)
𝑛 the num-

ber of vertices of degree 𝑘 is highly concentrated around 𝑛𝑝𝑘(𝛿0) for some sequence
(𝑝𝑘(𝛿0))∞𝑘=𝑚. This motivates the interpretation of 𝑝𝑘(𝛿0) as the limiting degree dis-
tribution of the random graph 𝐺(𝛿0)

𝑛 . The expression for the probability mass of the
minimal degree𝑚 is especially simple [60, 104], and is given by

𝑝𝑚(𝛿0) ≔
2 + 𝛿0/𝑚

𝑚 + 𝛿0 + 2 + 𝛿0/𝑚
. (6.5)

We are now able to introduce our test, which is based on a comparison between
the observed number of minimal degree vertices 𝑁𝑚(𝐺𝑛) to its asymptotic expected
value under the null hypothesis 𝑛𝑝𝑚(𝛿0). When 𝑁𝑚(𝐺𝑛) deviates too much from
𝑛𝑝𝑚(𝛿0) we can reject the null hypothesis. This results in the following test:

Definition6.1 (Minimal degree test). Given a graph𝐺𝑛 of size𝑛 ≥ 1 and significance
level 𝛼 ∈ (0, 1), the minimal degree test rejects the null hypothesis 𝐻0 if

||𝑁𝑚(𝐺𝑛) − 𝑛𝑝𝑚(𝛿0)|| ≥ 𝑚√8𝑛 log(2/𝛼). (6.6)

The minimal degree test as defined above can written as the function 𝑇(𝐺𝑛) =
𝟙{|𝑁𝑚(𝐺𝑛)−𝑛𝑝𝑚(𝛿0)|≥𝑚√8𝑛 log(2/𝛼)}.

This brings us to the main result, where we show that the minimal degree test is
asymptotically powerful if 𝛾 > 1/2. That is, when 𝛾 > 1/2 then it is possible to make
the type-II error arbitrarily small for any significance level 𝛼 ∈ (0, 1). Furthermore,
when 𝛾 = 1/2 then it is possible to show that the type-II error is bounded by a constant
that depends on the specific model parameters. The proof of this result is postponed
to Section 6.4.

Theorem 6.1. The type-I and type-II error of the minimal degree test from Defini-
tion 6.1 are bounded by

ℙ(𝑇(𝐺(𝛿0)
𝑛 ) ≠ 0) ≤ (1 + 𝑜(1))𝛼, (6.7)

ℙ(𝑇(𝐺(𝛿0,𝛿1)
𝑛 ) ≠ 1) (6.8)

≤ {
𝑜(1) if 𝛾 > 1/2,

(2 + 𝑜(1)) exp (−(( 𝑐|1−𝑝𝑚(𝛿0)/𝑝𝑚(𝛿1)|
𝑚√8

−√log(2/𝛼)) ∨ 0)
2
) if 𝛾 = 1/2.

The reason that the type-I error is bounded by𝛼 ∈ (0, 1) is a direct consequence of
how we have defined the minimal degree test. In fact, the threshold for rejecting the
null hypothesis in (6.6) is chosen such that the Azuma-Hoeffding inequality directly
implies that the type-I error is bounded by chosen significance level 𝛼.
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Tobound the type-II error the idea is to analyze𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )−𝑛𝑝𝑚(𝛿0) in two steps.

First we consider the expected difference given by𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )]−𝑛𝑝𝑚(𝛿0) and show

that this is approximately 𝑐𝑛𝛾(1−𝑝𝑚(𝛿0)/𝑝𝑚(𝛿1)), and thenwe control the deviations
of 𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 ) − 𝔼[𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 )] again using the Azuma-Hoeffding inequality.

The downside of using the Azuma-Hoeffding inequality is that our test is likely
to be overly conservative, and that the resulting error bounds from Theorem 6.1 are
quite loose. To remedy this, we would need to more precisely quantify the deviations
𝑁𝑚(𝐺

(𝛿0)
𝑛 ) around its mean, both under the null and alternative. This is discussed

in more detail in Section 6.3, where we conjecture that 𝑁𝑚(𝐺
(𝛿0)
𝑛 ) and 𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 ) are

asymptotically normal.

6.3 Discussion

Here we remark on the results in this chapter, and explain some extensions of these
results that we are working on. In Chapter 7 we also discuss several open problems
that are related to the results in this chapter and that might be interesting to pursue.

Central limit theorem for 𝑵𝒎(𝑮𝒏). In the proof of Theorem 6.1 we use the
Azuma-Hoeffding inequality to bound the deviations of 𝑁𝑚(𝐺𝑛) around its mean.
As explained above, when the asymptotic distribution of 𝑁𝑚(𝐺𝑛) is known then this
wouldmake it possible to compute the type-I and type-II error asymptotically exactly.
This would result in two main improvements. First, when the asymptotic distribu-
tion of 𝑁𝑚(𝐺

(𝛿0)
𝑛 ) is known under the null hypothesis then it possible to asymptotically

calibrate the minimal degree test, and ensure the type-I error converges to a given
significance level 𝛼 ∈ (0, 1). Second, when the asymptotic distribution of 𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 )

is also known under the alternative hypothesis then it is possible to optimize the con-
stants for the case 𝛾 = 1/2 in Theorem 6.1, and make it possible to exactly compute
the asymptotic power of the minimal degree test.

Under the null hypothesis and for 𝑚 = 1, it is known that 𝑁𝑘(𝐺
(𝛿0)
𝑛 ), with 𝑘 ≥

𝑚, admits a central limit theorem [153]. In particular, this shows that 𝑁𝑚(𝐺
(𝛿0)
𝑛 ) is

asymptotically normally distributed. Furthermore, our preliminary computations
suggest that it is possible to extend this result to the case𝑚 > 1 and derive a central
limit theorem for 𝑁𝑚(𝐺

(𝛿0)
𝑛 ) that is valid for general 𝑚 ≥ 1. If this is indeed the case,

then it would be possible to replace the rejection threshold in (6.6) by a quantile of
the normal distribution with the appropriate variance. Furthermore, using the same
reasoning as in the proof of Theorem 6.1, it can then be shown that the resulting test
has a type-I error that converges to the given significance level 𝛼 ∈ (0, 1). Thus, this
would guarantee that the test is asymptotically correctly calibrated.

Under the alternative hypothesis, there are no known results about the asymp-
totic normality of 𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 ). However, our preliminary calculations suggest that

𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 ) also admits a central limit theoremwith different mean but with the same

variance as under the null hypothesis. The reason for this is that in our model the
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changepoint happens very late. Because of this, the number of vertices that enter
after the changepoint is too small to change the asymptotic variance, but it is large
enough to result in a considerably different mean.

Test for unknown 𝜹𝟎. Theminimal degree test fromDefinition 6.1 requires know-
ledge of the parameter 𝛿0. When this is not available, a possible approach could be
to estimate it and use an estimator 𝛿̂ as a plug-in instead of the true value 𝛿0. For this
approach to work, we would need to bound how much 𝑁𝑚 and 𝛿̂ are correlated, and
adjust our test accordingly to compensate for this.

A good candidate for this would be the estimator proposed in [87]. Furthermore,
this estimator is shown to be asymptotically normally distributed. Viewing this in
light of the previous discussion point, if we could show that 𝑁𝑚(𝐺𝑛) admits a central
limit theorem then it could also be possible to derive a joint central limit theorem for
(𝑁𝑚, 𝛿̂). Such a result would be very useful because that would make it possible to
precisely define a test where the asymptotic type-I error is exactly equal to a given
significance level 𝛼 ∈ (0, 1).

6.4 Proof

Here we prove Theorem 6.1 and compute the asymptotic type-I and type-II error of
the minimal degree test from Definition 6.1. We consider the type-I and type-II error
separately.

Type-I error: We start by using [60, Proposition 2.2] (see also [104, Proposition 8.7]),
which states that there exists a constant 𝐶0 = 𝐶0(𝛿0, 𝑚) such that, for all 𝑛 ≥ 1,

|𝔼[𝑁𝑚(𝐺
(𝛿0)
𝑛 )] − 𝑛𝑝𝑚(𝛿0)| ≤ 𝐶0,

where𝑝𝑚(𝛿0) is given by (6.5). Furthermore, we use theAzuma-Hoeffding inequality
together with [104, Lemmas 8.5 and 8.6]. This gives, for any 𝑥 > 0,

ℙ(||𝑁𝑚(𝐺
(𝛿0)
𝑛 ) − 𝔼[𝑁𝑚(𝐺

(𝛿0)
𝑛 )]|| ≥ 𝑥) ≤ 2e−𝑥2/8𝑚2𝑛.

Combining the above, we obtain that the type-I error of the minimal degree test from
Definition 6.1 is bounded by

ℙ(𝑇(𝐺(𝛿0)
𝑛 ) ≠ 0) = ℙ(||𝑁𝑚(𝐺

(𝛿0)
𝑛 ) − 𝑛𝑝𝑚(𝛿0)|| ≥ 𝑚√8𝑛 log(2/𝛼))

≤ ℙ(||𝑁𝑚(𝐺
(𝛿0)
𝑛 ) − 𝔼[𝑁𝑚(𝐺

(𝛿0)
𝑛 )]|| ≥ 𝑚√8𝑛 log(2/𝛼) − 𝐶0)

≤ 2 exp (−
(𝑚√8𝑛 log(2/𝛼) − 𝐶0)2

8𝑚2𝑛 ) = (1 + 𝑜(1))𝛼.

This shows that the type-I error is bounded by𝛼, completing the first part of the proof.
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Type-II error: For the type-II error we first quantify 𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )] − 𝑛𝑝𝑚(𝛿0), and

then we apply the Azuma-Hoeffding inequality to control the deviations similarly as
in the previous part.

Given a graph𝐺𝑛, define𝑁⋆
𝑚(𝐺𝑛) as the number vertices with degree𝑚 in𝐺𝑛 that

entered the graph after the changepoint 𝜏𝑛. That is,

𝑁⋆
𝑚(𝐺𝑛) ≔

𝑛
∑
𝑡=𝜏𝑛

𝟙{deg𝑣𝑡(𝐺𝑛)=𝑚}.

Because we consider an affine preferential attachment model, vertices that enter the
graph after the changepoint have exactly the same attachment dynamics when the
graph 𝐺𝑛 = 𝐺(𝛿1)

𝑛 is a preferential attachment model with parameter 𝛿1, as well as
when the graph 𝐺𝑛 = 𝐺(𝛿0,𝛿1)

𝑛 is a preferential attachment model with a changepoint
(i.e., the model which has 𝛿0 at time 1 ≤ 𝑡 < 𝜏𝑛 and changes to 𝛿1 for the remaining
time 𝜏𝑛 ≤ 𝑡 ≤ 𝑛). Therefore, because the quantity 𝑁⋆

𝑚(𝐺𝑛) only count vertices that
enter the graph after the changepoint, we can relate 𝑁⋆

𝑚(𝐺𝑛) in both models. This
gives the relation

𝔼[𝑁𝑚(𝐺
(𝛿1)
𝑛 )] − 𝔼[𝑁𝑚(𝐺

(𝛿1)
𝜏𝑛 )]

𝑛
∏
𝑡=𝜏𝑛

𝑚
∏
𝑖=1

(1 −
𝑚 + 𝛿1

𝑡(2𝑚 + 𝛿1) − 2𝑚 + 𝑖 − 1)
(6.9)

= 𝔼[𝑁⋆
𝑚(𝐺

(𝛿1)
𝑛 )]

= 𝔼[𝑁⋆
𝑚(𝐺

(𝛿0,𝛿1)
𝑛 )]

= 𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )] − 𝔼[𝑁𝑚(𝐺

(𝛿0)
𝜏𝑛 )]

𝑛
∏
𝑡=𝜏𝑛

𝑚
∏
𝑖=1

(1 −
𝑚 + 𝛿1

𝑡(2𝑚 + 𝛿1) − 2𝑚 + 𝑖 − 1)
.

Note that the product term in (6.9) gives the probability that a given vertexwith degree
𝑚 at the changepoint time 𝜏𝑛 receives no further connections (i.e., that vertex remains
a degree 𝑚 vertex in the graph at time 𝑛). Hence, the first and last equation in (6.9)
compute 𝔼[𝑁⋆

𝑚(𝐺𝑛)] by first counting the expected number of degree 𝑚 vertices in
𝐺𝑛, and then subtracting the expected number of degree𝑚 vertices that entered the
graph before the changepoint 𝜏𝑛.

To continue, we will derive an approximation for the product in (6.9). Let 𝐴 be
the product term in (6.9), and note that there exists a 𝜆 ∈ [1, 2] such that

𝐴 ≔
𝑛
∏
𝑡=𝜏𝑛

𝑚
∏
𝑖=1

(1 −
𝑚 + 𝛿1

𝑡(2𝑚 + 𝛿1) − 2𝑚 + 𝑖 − 1)
=

𝑛
∏
𝑡=𝜏𝑛

𝑚
∏
𝑖=1

(1 −
𝑚 + 𝛿1

𝑡(2𝑚 + 𝛿1) − 𝜆𝑚)

=
⎛
⎜⎜
⎝

Γ (𝑛 + 1 − (1+𝜆)𝑚+𝛿1
2𝑚+𝛿1

)/Γ (𝜏𝑛 −
(1+𝜆)𝑚+𝛿1
2𝑚+𝛿1

)

Γ (𝑛 + 1 − 𝜆𝑚
2𝑚+𝛿1

)/Γ (𝜏𝑛 −
𝜆𝑚

2𝑚+𝛿1
)

⎞
⎟⎟
⎠

𝑚

. (6.10)
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To simplify notation, let 𝛼 ≔ ((1+𝜆)𝑚+𝛿1)/(2𝑚+𝛿1) and 𝛽 ≔ 𝜆𝑚/(2𝑚+𝛿1). Then,
using Stirling approximation log(Γ(𝑥)) = (𝑥 − 1/2) log(𝑥) − 𝑥 + log(2𝜋)/2 + 𝑂(1/𝑥),
and taking the logarithm of (6.10) we obtain

log(𝐴) = 𝑚 log (
Γ (𝑛 + 1 − 𝛼) /Γ (𝜏𝑛 − 𝛼)
Γ (𝑛 + 1 − 𝛽) /Γ (𝜏𝑛 − 𝛽)

)

= 𝑚[(𝑛 + 1/2 − 𝛼) log (𝑛 + 1 − 𝛼) − (𝑛 + 1/2 − 𝛽) log (𝑛 + 1 − 𝛽)]

− 𝑚[(𝜏𝑛 − 𝛼 − 1/2) log (𝜏𝑛 − 𝛼) − (𝜏𝑛 − 𝛽 − 1/2) log (𝜏𝑛 − 𝛽)] + 𝑂 (1𝑛) .

Using a Taylor expansion around 𝑛 = ∞ we can simplify the above. This yields

log(𝐴) = 𝑚(𝛽 − 𝛼)(1 + log(𝑛)) − 𝑚(𝛽 − 𝛼)(1 + log(𝜏𝑛)) + 𝑂 ( 1𝑛)

= 𝑚(𝛽 − 𝛼) log ( 𝑛𝜏𝑛
) + 𝑂 (1𝑛)

= 𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

log (
𝜏𝑛
𝑛 ) + 𝑂 (1𝑛)

= 𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

log (1 − 𝑐𝑛𝛾
𝑛 ) + 𝑂(1𝑛) .

Therefore, using another Taylor expansion, we have the following approximation for
𝐴 from (6.10),

𝐴 = exp (
𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

log (1 − 𝑐𝑛𝛾
𝑛 ) + 𝑂(1𝑛))

= 1 − 𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

𝑐𝑛𝛾
𝑛 + 𝑂((𝑐𝑛

𝛾

𝑛 )
2
). (6.11)

Following our steps and using the relation between 𝐺(𝛿1)
𝑛 and 𝐺(𝛿0,𝛿1)

𝑛 from (6.9)
together with the definition of 𝐴, we obtain

𝔼[𝑁𝑚(𝐺
(𝛿1)
𝑛 )] − 𝐴𝔼[𝑁𝑚(𝐺

(𝛿1)
𝜏𝑛 )] = 𝔼[𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 )] − 𝐴𝔼[𝑁𝑚(𝐺

(𝛿0)
𝜏𝑛 )].

Rearranging the terms above and plugging in (6.11), we obtain

𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )] − 𝔼[𝑁𝑚(𝐺

(𝛿1)
𝑛 )] (6.12)

= −𝐴(𝔼[𝑁𝑚(𝐺
(𝛿1)
𝜏𝑛 )] − 𝔼[𝑁𝑚(𝐺

(𝛿0)
𝜏𝑛 )])

= (
𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

𝑐𝑛𝛾
𝑛 − 1 + 𝑂((𝑐𝑛

𝛾

𝑛 )
2
))(𝔼[𝑁𝑚(𝐺

(𝛿1)
𝜏𝑛 )] − 𝔼[𝑁𝑚(𝐺

(𝛿0)
𝜏𝑛 )]).

To continue, we again use [60, Proposition 2.2] (see also [104, Proposition 8.7]), which
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states that there exists constants 𝐶0 = 𝐶0(𝛿0, 𝑚) and 𝐶1 = 𝐶1(𝛿1, 𝑚) such that, for all
𝑛 ≥ 1,

||𝔼[𝑁𝑚(𝐺
(𝛿0)
𝑛 )] − 𝑛𝑝𝑚(𝛿0)|| ≤ 𝐶0, and ||𝔼[𝑁𝑚(𝐺

(𝛿1)
𝑛 )] − 𝑛𝑝𝑚(𝛿1)|| ≤ 𝐶1,

where 𝑝𝑚(𝛿0) and 𝑝𝑚(𝛿1) are given by (6.5). Combining this with (6.12), we obtain
the difference in the expected number of vertices of degree𝑚 at time 𝑛 between the
null model and alternative model. This shows that

𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )] − 𝑛𝑝𝑚(𝛿0)

= 𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )] − 𝔼[𝑁𝑚(𝐺

(𝛿1)
𝑛 )] + 𝔼[𝑁𝑚(𝐺

(𝛿1)
𝑛 )] − 𝑛𝑝𝑚(𝛿0)

= (
𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

𝑐𝑛𝛾
𝑛 − 1 + 𝑂((𝑐𝑛

𝛾

𝑛 )
2
))(𝑛 − 𝑐𝑛𝛾)(𝑝𝑚(𝛿1) − 𝑝𝑚(𝛿0))

+ 𝑛(𝑝𝑚(𝛿1) − 𝑝𝑚(𝛿0)) + 𝑂(1)

= 𝑐𝑛𝛾(1 +
𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

+ 𝑂(𝑐𝑛
𝛾

𝑛 ))(𝑝𝑚(𝛿1) − 𝑝𝑚(𝛿0)) + 𝑂(1).

Hence, for 1/2 ≤ 𝛾 < 1, it follows that

𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )] − 𝑛𝑝𝑚(𝛿0) = 𝑐𝑛𝛾(1 +

𝑚(𝑚 + 𝛿1)
2𝑚 + 𝛿1

+ 𝑜(1))(𝑝𝑚(𝛿1) − 𝑝𝑚(𝛿0))

= 𝑐𝑛𝛾(1 −
𝑝𝑚(𝛿0)
𝑝𝑚(𝛿1)

+ 𝑜(1)),

where 𝑝𝑚(𝛿0) and 𝑝𝑚(𝛿1) are given by (6.5).
Similarly as for the type-I error, we use the Azuma-Hoeffding inequality (to-

gether with [104, Lemmas 8.5 and 8.6]). It can easily be checked that this result also
holds in the preferential attachment model with a changepoint. This gives

ℙ (||𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 ) − 𝔼[𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 )]|| ≥ 𝑥) ≤ 2e−𝑥2/8𝑚2𝑛.

Combining the above

ℙ(𝑇(𝐺(𝛿0,𝛿1)
𝑛 ) ≠ 1) = ℙ (||𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 ) − 𝑛𝑝𝑚(𝛿0)|| < 𝑚√8𝑛 log(2/𝛼))

≤ ℙ(||𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 ) − 𝔼[𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 )]||

≥ (||𝔼[𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 )] − 𝑛𝑝𝑚(𝛿0)|| − 𝑚√8𝑛 log(2/𝛼)) ∨ 0)

≤ ℙ(||𝑁𝑚(𝐺
(𝛿0,𝛿1)
𝑛 ) − 𝔼[𝑁𝑚(𝐺

(𝛿0,𝛿1)
𝑛 )]||

≥ (𝑐𝑛𝛾 |1 − 𝑝𝑚(𝛿0)/𝑝𝑚(𝛿1) + 𝑜(1)| − 𝑚√8𝑛 log(2/𝛼)) ∨ 0)

≤ 2 exp (−
((𝑐𝑛𝛾 |1 − 𝑝𝑚(𝛿0)/𝑝𝑚(𝛿1) + 𝑜(1)| − 𝑚√8𝑛 log(2/𝛼)) ∨ 0)2

8𝑚2𝑛 ) .
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Finally, considering the cases 𝛾 > 1/2 and 𝛾 = 1/2 separately, this gives

ℙ(𝑇(𝐺(𝛿0,𝛿1)
𝑛 ) ≠ 1)

≤ {
𝑜(1) if 𝛾 > 1/2,

(2 + 𝑜(1)) exp (−(( 𝑐|1−𝑝𝑚(𝛿0)/𝑝𝑚(𝛿1)|
𝑚√8

−√log(2/𝛼)) ∨ 0)
2
) if 𝛾 = 1/2.

This completes the second part of the proof.
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Chapter 7

Discussion and open problems

In this thesis we have presented and analyzed several methods that can be used to de-
tect planted structures in random graphs. This resulted in new ideas and interesting
directions for future research. In this final chapter, we discuss some of these open
problems and how they are related to the results obtained in the previous chapters.

7.1 Two-point concentration of the clique and quasi-clique
number

Two-point concentration of the clique number in an Erdős-Rényi random graph has
been known since the seventies [125, 126]. More recently this result has been ex-
tended to other random graph models. For instance, two-point concentration of the
clique number is proven for random geometric graphs [137], and in Chapter 2 for
rank-1 random graphs. Moreover, slightly weaker concentration results are known
for dense inhomogeneous random graphs, see [66] and Chapter 3. When the largest
clique is allowed to have a fraction of edges missing then this is called a quasi-clique.
Two-point concentration for the size of the largest quasi-clique was only recently
shown for dense Erdős-Rényi randomgraphs [13], and in Chapter 3we have obtained
a slightly weaker concentration result in the inhomogeneous setting.

These results seem to suggest that theremight be amore general underlying prin-
ciple that ensures these concentration results. It would therefore be interesting to
investigate which properties a random graph model needs to have in order to guar-
antee two-point concentration of the clique or quasi-clique number, and in particular
to what extend this is affected by inhomogeneity and underlying geometry of the ran-
dom graph model.
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7.2 Detecting a botnet in a geometric inhomogeneous random
graph

In Chapter 5 we have considered the problem of detecting a planted botnet in a ran-
dom geometric graph. However, for many applications the random geometric graph
model is not the most appropriate, and it would be interesting to investigate the pos-
sibilities of extending the results from Chapter 5 to other random graph models. A
good candidate for this would be the geometric inhomogeneous random graph from
[41, 42], or the related hyperbolic random graph [29, 117]. This model better reflects
the clustering, degree inhomogeneity, and distances observed inmany real-world net-
works [77, 81, 94, 138, 156], and might therefore be more suitable to use as null hy-
pothesis in the setting of botnet detection.

To be more concrete, consider the following model. For each vertex 𝑖 ∈ 𝑉, let𝑊𝑖
be the weight sampled from a power-law distribution with exponent 𝜏 > 2, and let
𝑋𝑖 be the location which is a uniform sample on the 𝑑-dimensional torus T𝑑. Given
a constant 𝛼 > 1 and conditionally on the weights and locations, two vertices are
connected independently with probability

𝑝𝑖𝑗 ≔ ℙ((𝑖, 𝑗) ∈ 𝐸 || (𝑋𝑘)𝑘∈𝑉, (𝑊𝑘)𝑘∈𝑉)

=
⎧⎪
⎨⎪
⎩

Θ((
𝑊𝑖𝑊𝑗

𝑛‖𝑋𝑖−𝑋𝑗‖𝑑
)
𝛼
∧ 1), if 𝑖, 𝑗 ∈ 𝑉 ⧵ 𝐵,

Θ(
𝑊𝑖𝑊𝑗

𝑛
∧ 1), if 𝑖 ∈ 𝐵 or 𝑗 ∈ 𝐵,

(7.1)

where 𝐵 ⊆ 𝑉 denotes the set of botnet vertices, which could be the empty-set to
indicate that there is no botnet.

A pair of vertices with no endpoints in the botnet is connected with probabil-
ity equal to that in the geometric inhomogeneous random graph [41, 42], and when
one of the endpoints is in the botnet then these vertices connect according to the
definition of the Chung-Lu model [53, 54, 55]. A nice property of this setup is that
the marginal edge probabilities are the same for all pairs of vertices, regardless of
whether the endpoints belong to the botnet or not. That is, for every pair of vertices
𝑖, 𝑗 ∈ 𝑉 it follows thatℙ((𝑖, 𝑗) ∈ 𝐸 | (𝑊𝑘)𝑘∈𝑉) = Θ(𝑊𝑖𝑊𝑗/𝑛∧1) by integrating out the
locations 𝑋𝑖 and 𝑋𝑗, see [42, Lemma 3.3]. This means that it is possible to choose the
constants hidden behind the Θ(⋅) in (7.1) such that the expected degree is same for
both botnet and non-botnet vertices.

Under the null hypothesis we assume that there is no botnet, so 𝐵 = ∅. On the
other hand, under the alternative hypothesis the graph does contain a small number
botnet vertices. The goal is then similar to that in Chapter 5, namely to develop a
method that can accurately test for the presence of a botnet in a given observed graph.

Intuitively, it seems reasonable to expect that the isolated star test fromChapter 5
can be adapted to the model above. The reason is that the geometry underlying the
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non-botnet vertices will producemany local connections, resulting in relatively small
isolated stars. On the other hand, the botnet vertices ignore this geometry and will
therefore tend to form larger isolated stars. This is confirmed by the simulation study
presented in Figure 7.1, where the results of 2500 samples of the model described
above are collated. Herewe can see a clear separation in the size of the largest isolated
star 𝑆(𝑖) of normal and botnet vertices. As predicted, a botnet vertex seems to always
have a larger isolated star than a normal vertex of similar degree, with the difference
being more pronounced in vertices with large degree. Thus a test that rejects the null
hypothesis when the observed graph contains a vertex 𝑖 ∈ 𝑉 that has both a large
degree deg(𝑖) and a large degree corrected isolated star 𝑆(𝑖)/deg(𝑖) could be a good
candidate to detect the presence of a botnet in a geometric inhomogeneous random
graph, where we used deg(𝑖) and 𝑆(𝑖) to denote the degree and the size of the largest
isolated star of 𝑖 ∈ 𝑉 respectively. This suggest that such a degree corrected isolated
star test is asymptotically powerful when the graph contains at least some botnet
vertex with large enough degree.
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(a) Power-law weights with exponent 𝜏 = 2.2.
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(b) Power-law weights with exponent 𝜏 = 2.8.

Figure 7.1: The isolated star size as a function of vertex degree for every vertex from 2500
samples of a geometric inhomogeneous random graph with a planted botnet. The botnet ver-
tices are red while the normal vertices are blue. The parameters are: graph size 𝑛 = 10000,
botnet size |𝐵| = 500, dimension 𝑑 = 2, and 𝛼 = 2. The constants hidden behind the Θ(⋅) in
(7.1) are chosen such that the average degree is equal to 20.

7.3 Changepointdetection in thepreferential attachmentmodel

In Chapter 6 we have considered the preferential attachment model and we have
studied the possibility of detecting a change in the attachment function. In particular,
we focused on the setting where the changepoint, if present, happens at a very late
point in time, meaning that only a sub-linear amount of vertices enter the graph after
the changepoint. We showed that it is indeed possible to detect such a changepoint,
and that this can simply be achieved by counting the number of verticeswithminimal
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degree𝑁𝑚(𝑛) in the observed graph. This project can be extended in several directions
that would each be interesting to explore further. We will discuss these separately
below.

Linear time changepoint. Instead of considering a late changepoint, we could
consider a changepoint that happens at time 𝜏𝑛 = 𝑐𝑛, with 𝑐 ∈ (0, 1). In this case, the
problem actually becomes easier, provided 𝛿0 is known (i.e., when the null model is
completely specified). However, when 𝛿0 is unknown then it needs to be estimated
and this is where the main difficulty lies.

For a late changepoint it is relatively easy to estimate 𝛿0 because the graph is
mostly composed of vertices that were incorporated before the changepoint. As ex-
plained in Chapter 6, a good candidate would be to estimate 𝛿0 using the estimator
𝛿̂ described in [87]. However, when the changepoint happens earlier, say at time
𝜏𝑛 = 𝑐𝑛 or even earlier, then there could be a significant bias in the estimator 𝛿̂. Here
it would be interesting to see what the earliest changepoint time could be such that
it is still possible to use the estimator 𝛿̂ from [87] instead of using the true value 𝛿0.
Furthermore, it would be interesting to investigate whether it is possible to adjust the
estimator 𝛿̂ from [87] so that it becomes less biased under the alternative hypothesis,
and thereby making it possible to reliably detect an even earlier changepoint.

Estimating the changepoint. We were mostly interested in detecting whether a
given graph contains a changepoint or not. Another very interesting problem would
be to estimate the changepoint time. This problem of estimating a changepoint was
considered under some restrictions (𝑚 = 1, changepoint linear in time) in [14, 21].
It would be interesting to investigate whether it is also possible to estimate a change-
point that happens very late, or in a preferential attachment model with𝑚 > 1.

Detecting alternating vertex types. In all the above we consider the detection of
a changepoint, where all vertices before the changepoint have parameter 𝛿0 and all
vertices after the changepoint have parameter 𝛿1. However, the two types of vertices
could also enter the graph in alternating or random order. That is, given a parameter
𝑝 ∈ [0, 1], each vertex that enters the graph has parameter 𝛿0with probability𝑝 and it
has parameter 𝛿1with probability 1−𝑝. Wewould then like to testwhether all vertices
had parameter 𝛿0 (i.e., 𝑝 = 1) versus the alternative where the graph contains both
types of vertices.

From a statistical point of view this would make the problem more difficult. It
would therefore be interesting to see to what extent it is still possible to distinguish
between the null and alternativemodels, especially in the setting where the paramet-
ers 𝛿0 and 𝛿1 are not known.



Bibliography

[1] Abbe, E. ‘Community detection and stochastic block models: recent develop-
ments’. Journal of Machine Learning Research 18.177 (2017), pp. 1–86.

[2] Abello, J., Pardalos, P. M., and Resende, M. G. C. ‘On maximum clique prob-
lems in very large graphs’. External memory algorithms. Ed. by J. M. Abello
and J. S. Vitter. Vol. 50. American Mathematical Society, 1999, pp. 119–130.

[3] Abello, J., Resende, M. G., and Sudarsky, S. ‘Massive quasi-clique detection’.
LATIN 2002: Theoretical Informatics. Ed. by S. Rajsbaum. Vol. 2286. LATIN
2002. Lecture Notes in Computer Science. Springer, 2002, pp. 598–612.

[4] Adamic, L. A., Huberman, B. A., Barabási, A.-L., Albert, R., Jeong, H., and
Bianconi, G. ‘Power-law distribution of the world wide web’. Science 287.5461
(2000), p. 2115.

[5] Addario-Berry, L., Broutin, N., Devroye, L., and Lugosi, G. ‘On combinatorial
testing problems’. The Annals of Statistics 38.5 (2010), pp. 3063–3092.

[6] Alba, R. D. ‘A graph-theoretic definition of a sociometric clique’. The Journal
of Mathematical Sociology 3.1 (1973), pp. 113–126.

[7] Albert, R. and Barabási, A. L. ‘Topology of evolving networks: Local events
and universality’. Physical Review Letters 85.24 (2000), pp. 5234–5237.

[8] Alon, N., Krivelevich, M., and Sudakov, B. ‘Finding a large hidden clique in a
random graph’. Random Structures & Algorithms 13.3-4 (1998), pp. 457–466.

[9] Arias-Castro, E., Candès, E. J., and Durand, A. ‘Detection of an anomalous
cluster in a network’. The Annals of Statistics 39.1 (2011), pp. 278–304.

[10] Arias-Castro, E., Candès, E. J., Helgason, H., and Zeitouni, O. ‘Searching for
a trail of evidence in a maze’. The Annals of Statistics 36.4 (2008), pp. 1726–
1757.

[11] Arias-Castro, E. andVerzelen,N. ‘Community detection in dense randomnet-
works’. The Annals of Statistics 42.3 (2014), pp. 940–969.

[12] Arias-Castro, E. and Verzelen, N. ‘Community detection in sparse random
networks’. The Annals of Applied Probability 25.6 (2015), pp. 3465–3510.

[13] Balister, P., Bollobás, B., Sahasrabudhe, J., andVeremyev, A. ‘Dense subgraphs
in random graphs’. Discrete Applied Mathematics 260 (2019), pp. 66–74.

145



146 Bibliography

[14] Banerjee, S., Bhamidi, S., and Carmichael, I. ‘Fluctuation bounds for continu-
ous time branching processes and nonparametric change point detection in
growing networks’ (2018).

[15] Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., and Vicsek, T.
‘Evolution of the social network of scientific collaborations’. Physica A: Stat-
istical Mechanics and its Applications 311.3-4 (2002), pp. 590–614.

[16] Barabási, A. L. and Albert, R. ‘Emergence of scaling in random networks’.
Science 286.5439 (1999), pp. 509–512.

[17] Baraud, Y. ‘Non-asymptotic minimax rates of testing in signal detection’.
Bernoulli 8.5 (2002), pp. 577–606.

[18] Barthélemy, M. ‘Spatial networks’. Physics Reports 499.1-3 (2011), pp. 1–101.
[19] Bet, G., Bogerd, K., Castro, R. M., and Hofstad, R. van der. ‘Detecting a botnet

in a network’. 2020. arXiv: 2005.10650.
[20] Bet, G., Bogerd, K., Castro, R.M., andHofstad, R. van der. ‘Detecting a change-

point in the preferential attachment model’ (2020+).
[21] Bhamidi, S., Jin, J., and Nobel, A. ‘Change point detection in network mod-

els: Preferential attachment and long range dependence’. Annals of Applied
Probability 28.1 (2018), pp. 35–78.

[22] Bhamidi, S., Steele, J. M., and Zaman, T. ‘Twitter event networks and the su-
perstar model’. Annals of Applied Probability 25.5 (2015), pp. 2462–2502.

[23] Bhattacharjee,M., Banerjee,M., andMichailidis, G. ‘Change point estimation
in a dynamic stochastic block model’. Tech. rep. 107. 2020, pp. 1–59.

[24] Bianconi, G. andMarsili, M. ‘Emergence of large cliques in random scale-free
network’. Europhysics Letters (EPL) 74.4 (2005), pp. 740–746.

[25] Bianconi, G. andMarsili,M. ‘Number of cliques in random scale-free network
ensembles’. Physica D: Nonlinear Phenomena 224.1-2 (2006), pp. 1–6.

[26] Bogerd, K. ‘Quasi-cliques in inhomogeneous random graphs’. 2020. arXiv:
2009.04945.

[27] Bogerd, K., Castro, R. M., and Hofstad, R. van der. ‘Cliques in rank-1 random
graphs: the role of inhomogeneity’. Bernoulli 26.1 (2020), pp. 253–285.

[28] Bogerd, K., Castro, R. M., Hofstad, R. van der, and Verzelen, N. ‘Detecting a
planted community in an inhomogeneous randomgraph’. 2019. arXiv:1909.
03217.

[29] Boguñá, M., Papadopoulos, F., and Krioukov, D. ‘Sustaining the internet with
hyperbolic mapping’. Nature Communications 1.62 (2010).

[30] Bollobás, B. and Erdős, P. ‘Cliques in random graphs’.Mathematical Proceed-
ings of the Cambridge Philosophical Society 80.4191 (1976), pp. 419–427.

[31] Bollobás, B., Janson, S., and Riordan, O. ‘The phase transition in inhomogen-
eous random graphs’. Random Structures &Algorithms 31.1 (2007), pp. 3–122.

[32] Bollobás, B. and Riordan, O. ‘The diameter of a scale-free random graph’.
Combinatorica 24.1 (2004), pp. 5–34.

http://arxiv.org/abs/2005.10650
http://arxiv.org/abs/2009.04945
http://arxiv.org/abs/1909.03217
http://arxiv.org/abs/1909.03217


Bibliography 147

[33] Bollobás, B., Riordan, O., Spencer, J., and Tusnády, G. ‘The degree sequence
of a scale-free random graph process’. Random Structures & Algorithms 18.3
(2001), pp. 279–290.

[34] Boppana, R. and Halldórsson, M.M. ‘Approximatingmaximum independent
sets by excluding subgraphs’. BIT 32.2 (1992), pp. 180–196.

[35] Bordenave, C., Lelarge, M., andMassoulié, L. ‘Non-backtracking spectrum of
random graphs: community detection and non-regular Ramanujan graphs’.
The Annals of Probability 46.1 (2018), pp. 1–71.

[36] Boucheron, S., Lugosi, G., and Massart, P. ‘Concentration inequalities: a
nonasymptotic theory of independence’. Oxford University Press, 2013.

[37] Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V. T., and Pottié,
O. ‘The max quasi-independent set problem’. Journal of Combinatorial
Optimization 23.1 (2012), pp. 94–117.

[38] Bradonjić, M., Elsässer, R., Friedrich, T., Sauerwald, T., and Stauffer, A. ‘Effi-
cient broadcast on random geometric graphs’. Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete algorithms. 2010, pp. 1412–1421.

[39] Brennan, M., Bresler, G., and Huleihel, W. ‘Reducibility and computational
lower bounds for problems with planted sparse structure’. Proceedings of the
31stConference onLearningTheory.Vol. 75. Proceedings of MachineLearning
Research. 2018, pp. 48–166.

[40] Bresler, G. and Nagaraj, D. ‘Optimal single sample tests for structured versus
unstructured network data’. Proceedings of the 31st Conference on Learning
Theory. Proceedings of Machine Learning Research. 2018.

[41] Bringmann, K., Keusch, R., and Lengler, J. ‘Average distance in a general class
of scale-free networkswith underlying geometry’. 2016. arXiv:1602.05712.

[42] Bringmann, K., Keusch, R., and Lengler, J. ‘Geometric inhomogeneous ran-
dom graphs’. Theoretical Computer Science 760 (2019), pp. 35–54.

[43] Britton, T., Deijfen, M., and Martin-L of, A. ‘Generating simple random
graphs with prescribed degree distribution’. Journal of Statistical Physics
124.6 (2006), pp. 1377–1397.

[44] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., andWiener, J. ‘Graph structure in the web’. Computer Networks
33.1 (2000), pp. 309–320.

[45] Brunato, M., Hoos, H. H., and Battiti, R. ‘On effectively finding maximal
quasi-cliques in graphs’. Learning and Intelligent Optimization. Ed. by V.
Maniezzo, R. Battiti, and J.-P. Watson. Vol. 5313. LION 2007. Lecture Notes
in Computer Science. Springer, 2008, pp. 41–55.

[46] Bubeck, S., Devroye, L., and Lugosi, G. ‘Finding Adam in random growing
trees’. Random Structures & Algorithms 50.2 (2017), pp. 158–172.

[47] Bubeck, S., Ding, J., Eldan, R., and Rácz, M. Z. ‘Testing for high-dimensional
geometry in random graphs’. Random Structures & Algorithms 49.3 (2016),
pp. 503–532.

http://arxiv.org/abs/1602.05712


148 Bibliography

[48] Bubeck, S., Eldan, R., Mossel, E., and Rácz, M. Z. ‘From trees to seeds: On
the inference of the seed from large trees in the uniform attachment model’.
Bernoulli 23.4A (2017), pp. 2887–2916.

[49] Bubeck, S., Mossel, E., and Rácz, M. Z. ‘On the influence of the seed graph
in the preferential attachment model’. IEEE Transactions on Network Science
and Engineering 2.1 (2015), pp. 30–39.

[50] Butucea, C. and Ingster, Y. I. ‘Detection of a sparse submatrix of a high-
dimensional noisy matrix’. Bernoulli 19.5B (2011), pp. 2652–2688.

[51] Caltagirone, F., Lelarge, M., and Miolane, L. ‘Recovering asymmetric com-
munities in the stochastic block model’. IEEE Transactions on Network Sci-
ence and Engineering 5.3 (2016), pp. 237–246.

[52] Chen, L. H. Y. ‘Poisson approximation for dependent trials’. Annals of Prob-
ability 3.3 (1975), pp. 534–545.

[53] Chung, F. and Lu, L. ‘Connected components in random graphs with given
expected degree sequences’. Annals of Combinatorics 6.2 (2002), pp. 125–145.

[54] Chung, F. and Lu, L. ‘The average distance in a random graph with given
expected degrees’. Internet Mathematics 1.1 (2003), pp. 91–113.

[55] Chung, F. and Lu, L. ‘The volume of the giant component of a random graph
with given expected degrees’. SIAM Journal on Discrete Mathematics 20.2
(2006), pp. 395–411.

[56] Corless, R.M., Gonnet, G.H., Hare, D. E. G., Jeffrey, D. J., andKnuth, D. E. ‘On
the LambertW function’.Advances in ComputationalMathematics 5.1 (1996),
pp. 329–359.

[57] Crane, H. and Xu, M. ‘Inference on the history of a randomly growing tree’.
2020. arXiv: 2005.08794.

[58] Curien, N., Duquesne, T., Kortchemski, I., and Manolescu, I. ‘Scaling limits
and influence of the seed graph in preferential attachment trees’. Journal de
l’École polytechnique —Mathématiques 2 (2015), pp. 1–34.

[59] Dall, J. and Christensen, M. ‘Random geometric graphs’. Physical Review E
66.1 (2002).

[60] Deijfen, M., Esker, H. van den, Hofstad, R. van der, and Hooghiemstra, G. ‘A
preferential attachmentmodel with random initial degrees’.Arkiv forMatem-
atik 47.1 (2007), pp. 41–72.

[61] Deijfen, M., Hofstad, R. van der, and Hooghiemstra, G. ‘Scale-free percol-
ation’. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 49.3
(2011), pp. 817–838.

[62] Dekel, Y., Gurel-Gurevich, O., and Peres, Y. ‘Finding hidden cliques in linear
time with high probability’. Combinatorics, Probability and Computing 23.01
(2014), pp. 29–49.

[63] Deshpande, Y. and Montanari, A. ‘Finding hidden cliques of size √𝑁/e in
nearly linear time’. Journal Foundations of Computational Mathematics 15.4
(2015), pp. 1069–1128.

http://arxiv.org/abs/2005.08794


Bibliography 149

[64] Devroye, L. and Fraiman, N. ‘Connectivity of inhomogeneous random
graphs’. Random Structures & Algorithms 45.3 (2014), pp. 408–420.

[65] Díaz, J., Mitsche, D., Perarnau, G., and Pérez-Giménez, X. ‘On the relation
between graph distance and Euclidean distance in random geometric graphs’.
Advances in Applied Probability 48.3 (2016), pp. 848–864.

[66] Doležal, M., Hladký, J., and Máthé, A. ‘Cliques in dense inhomogeneous ran-
dom graphs’. Random Structures & Algorithms 51.2 (2017), pp. 275–314.

[67] Donoho, D. and Jin, J. ‘Higher criticism for detecting sparse heterogeneous
mixtures’. The Annals of Statistics 32.3 (2004), pp. 962–994.

[68] Dorogovtsev, S. N., Mendes, J. F., and Samukhin, A. N. ‘Structure of grow-
ing networks with preferential linking’. Physical Review Letters 85.21 (2000),
pp. 4633–4636.

[69] Ellis, R. B., Martin, J. L., and Yan, C. ‘Random geometric graph diameter in
the unit ball’. Algorithmica 47.4 (2007), pp. 421–438.

[70] Erdős, P. and Rényi, A. ‘On random graphs’. Publicationes Mathematicae 6
(1959), pp. 290–297.

[71] Faloutsos, M., Faloutsos, P., and Faioutsos, C. ‘On power-law relationships of
the internet topology’.Computer Communication Review 29.4 (1999), pp. 251–
261.

[72] Farkas, I., Jeong, H., Vicsek, T., Barabási, A. L., and Oltvai, Z. N. ‘The
topology of the transcription regulatory network in the yeast, Saccharomyces
cerevisiae’. Physica A: Statistical Mechanics and its Applications 318.3-4
(2003), pp. 601–612.

[73] Feige, U., Goldwasser, S., Lovasz, L., Safra, S., and Szegedy, M. ‘Approxim-
ating clique is almost NP-complete’. Proceedings 32nd Annual Symposium of
Foundations of Computer Science. IEEE, 1991, pp. 2–12.

[74] Feige, U. andKrauthgamer, R. ‘Finding and certifying a large hidden clique in
a semirandom graph’. Random Structures & Algorithms 16.2 (2000), pp. 195–
208.

[75] Feily,M., Shahrestani, A., andRamadass, S. ‘A survey of botnet and botnet de-
tection’. Proceedings of the 3rd International Conference on Emerging Security
Information, Systems and Technologies. 2009, pp. 268–273.

[76] Fortunato, S. ‘Community detection in graphs’. Physics Reports 486.3 (2010),
pp. 75–174.

[77] Fountoulakis, N., Hoorn, P. van der, Müller, T., and Schepers, M. ‘Clustering
in a hyperbolic model of complex networks’. 2020. arXiv: 2003.05525.

[78] Fountoulakis, N., Kang, R. J., and McDiarmid, C. ‘The t-stability number of a
random graph’. Electronic Journal of Combinatorics 17.1 (2010), pp. 1–29.

[79] Fountoulakis, N., Kang, R. J., andMcDiarmid, C. ‘Largest sparse subgraphs of
random graphs’. European Journal of Combinatorics 35 (2014), pp. 232–244.

[80] Fraiman, N. and Mitsche, D. ‘The diameter of inhomogeneous random
graphs’. Random Structures & Algorithms 53.2 (2018), pp. 308–326.

http://arxiv.org/abs/2003.05525


150 Bibliography

[81] Friedrich, T. andKrohmer, A. ‘On the diameter of hyperbolic random graphs’.
ICALP 2015: Automata, Languages, and Programming. Vol. 9135. Springer
Verlag, 2015, pp. 614–625.

[82] Friedrich, T. and Krohmer, A. ‘Parameterized clique on inhomogeneous ran-
dom graphs’. Discrete Applied Mathematics 184 (2015), pp. 130–138.

[83] Friedrich, T., Sauerwald, T., and Stauffer, A. ‘Diameter and broadcast time of
random geometric graphs in arbitrary dimensions’. Algorithmica 67.1 (2013),
pp. 65–88.

[84] Gao, C. and Lafferty, J. ‘Testing network structure using relations between
small subgraph probabilities’. 2017. arXiv: 1704.06742.

[85] Gao, C., Ma, Z., Zhang, A. Y., and Zhou, H. H. ‘Community detection
in degree-corrected block models’. The Annals of Statistics 46.5 (2018),
pp. 2153–2185.

[86] Gao, F. ‘Modeling and interference of the internet movie database’. Master
Thesis. Eindhoven University of Technology, 2011.

[87] Gao, F. and Vaart, A. van der. ‘On the asymptotic normality of estimating the
affine preferential attachment network models with random initial degrees’.
Stochastic Processes and their Applications 127.11 (2017), pp. 3754–3775.

[88] García, S., Grill, M., Stiborek, J., and Zunino, A. ‘An empirical comparison of
botnet detection methods’. Computers and Security 45 (2014), pp. 100–123.

[89] García, S., Zunino, A., and Campo, M. ‘Survey on network-based botnet de-
tection methods’. Security and Communication Networks 7.5 (2014), pp. 878–
903.

[90] Gilbert, E. N. ‘Random graphs’. The Annals of Mathematical Statistics 30.4
(1959), pp. 1141–1144.

[91] Gilbert, E. N. ‘Random plane networks’. Journal of the Society for Industrial
and Applied Mathematics 9.4 (1961), pp. 533–543.

[92] Girvan, M. and Newman, M. E. J. ‘Community structure in social and biolo-
gical networks’. Proceedings of the National Academy of Sciences of the United
States of America 99.12 (2002), pp. 7821–6.

[93] Grimmett, G. R. and McDiarmid, C. J. H. ‘On colouring random graphs’.
Mathematical Proceedings of the Cambridge Philosophical Society 77.02
(1975), p. 313.

[94] Gugelmann, L., Panagiotou, K., and Peter, U. ‘Random hyperbolic graphs: de-
gree sequence and clustering’. ICALP 2012: Automata, Languages, and Pro-
gramming. Vol. 7392. Springer Berlin Heidelberg, 2012, pp. 573–585.

[95] Gulikers, L., Lelarge,M., andMassoulié, L. ‘A spectralmethod for community
detection inmoderately sparse degree-corrected stochastic blockmodels’.Ad-
vances in Applied Probability 49.3 (2017), pp. 686–721.

[96] Gulikers, L., Lelarge, M., andMassoulié, L. ‘An impossibility result for recon-
struction in a degree-corrected planted-partition model’. The Annals of Ap-
plied Probability 28.5 (2018), pp. 3002–3027.

http://arxiv.org/abs/1704.06742


Bibliography 151

[97] Hagerup, T. and Rüb, C. ‘A guided tour of Chernoff bounds’. Information Pro-
cessing Letters 33.6 (1990), pp. 305–308.

[98] Hajek, B., Wu, Y., and Xu, J. ‘Computational lower bounds for community
detection on random graphs’. Proceedings of the 28th Conference on Learning
Theory. Vol. 40. 2015, pp. 899–928.

[99] Hall, P. and Jin, J. ‘Innovated higher criticism for detecting sparse signals in
correlated noise’. Annals of Statistics 38.3 (2010), pp. 1686–1732.

[100] Hammersley, J. M. ‘The distribution of distance in a hypersphere’.The Annals
of Mathematical Statistics 21.3 (1950), pp. 447–452.

[101] Håstad, J. ‘Clique is hard to approximatewithin𝑛1−𝜀’.ActaMathematica 182.1
(1999), pp. 105–142.

[102] Heard, N. A., Weston, D. J., Platanioti, K., and Hand, D. J. ‘Bayesian anomaly
detectionmethods for social networks’.Annals of Applied Statistics 4.2 (2010),
pp. 645–662.

[103] Hoeffding, W. ‘A class of statistics with asymptotically normal distribution’.
The Annals of Mathematical Statistics 19.3 (1948), pp. 293–325.

[104] Hofstad, R. van der. ‘Random graphs and complex networks’. Vol. 1. Cam-
bridge University Press, 2017.

[105] Hofstad, R. van der. ‘Random graphs and complex networks’. Vol. 2. 2020+.
[106] Holland, P.W., Laskey, K. B., and Leinhardt, S. ‘Stochastic blockmodels: First

steps’. Social Networks 5.2 (1983), pp. 109–137.
[107] Hollander, F. den. ‘Probability theory: the coupling method’. 2012.
[108] Ingster, Y. I. ‘Some problems of hypothesis testing leading to infinitely divis-

ible distributions’.Mathematical Methods of Statistics 6.1 (1997), pp. 47–69.
[109] Janson, S., Łuczak, T., and Norros, I. ‘Large cliques in a power-law random

graph’. Journal of Applied Probability 47.04 (2010), pp. 1124–1135.
[110] Jeong, H., Tombor, B., Albert, R., Oltval, Z. N., and Barabásl, A. L. ‘The large-

scale organization of metabolic networks’. Nature 407.6804 (2000), pp. 651–
654.

[111] Jin, J., Ke, Z. T., and Luo, S. ‘Optimal adaptivity of signed-polygon statistics
for network testing’. 2019. arXiv: 1904.09532.

[112] Jin, J., Ke, Z., and Luo, S. ‘Network global testing by counting graphlets’.
Proceedings of the 35th International Conference on Machine Learning. 2018,
pp. 2333–2341.

[113] Kabatiansky, G. A. and Levenshtein, V. I. ‘On bounds for packings on a sphere
and in space’. Problems of Information Transmission 14.1 (1978), pp. 1–17.

[114] Kang, R. J. andMcDiarmid, C. ‘The t-improper chromatic number of random
graphs’. Combinatorics Probability and Computing 19.1 (2010), pp. 87–98.

[115] Karp, R.M. ‘Reducibility among combinatorial problems’.Complexity of Com-
puter Computations. Ed. by R. E. Miller, J. W. Thatcher, and J. D. Bohlinger.
Springer, 1972, pp. 85–103.

http://arxiv.org/abs/1904.09532


152 Bibliography

[116] Karrer, B. and Newman, M. E. J. ‘Stochastic blockmodels and community
structure in networks’. Physical Review E 83.1 (2011), p. 016107.

[117] Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., and Boguñá, M. ‘Hy-
perbolic geometry of complex networks’. Physical Review E 82.3 (2010).

[118] Lehmann, E. L. and Romano, J. P. ‘Testing statistical hypotheses’. 3rd edition.
Springer-Verlag New York, 2005.

[119] Lovász, L. ‘Large networks and graph limits’. AmericanMathematical Society,
2012.

[120] Lovász, L. and Szegedy, B. ‘Limits of dense graph sequences’. Journal of Com-
binatorial Theory, Series B 96.6 (2006), pp. 933–957.

[121] Luce, R. D. ‘Connectivity and generalized cliques in sociometric group struc-
ture’. Psychometrika 15.2 (1950), pp. 169–190.

[122] Luce, R. D. and Perry, A. D. ‘A method of matrix analysis of group structure’.
Psychometrika 14.2 (1949), pp. 95–116.

[123] Marchand,D. C. andManolescu, I. ‘Influence of the seed in affine preferential
attachment trees’. Bernoulli 26.3 (2020), pp. 1665–1705.

[124] Massoulié, L. ‘Community detection thresholds and the weak Ramanujan
property’. Proceedings of the Annual ACM Symposium on Theory of Comput-
ing. 2014, pp. 694–703.

[125] Matula, D. W. ‘The employee party problem’. Notices Of The American Math-
ematical Society 19.2 (1972), pp. 89–156.

[126] Matula, D.W. ‘The largest clique size in a random graph’.Tech Report CS 7608,
Department of Computer Science andEngineering, SouthernMethodist Univer-
sity (1976).

[127] McDiarmid, C. ‘Colouring random graphs’.Annals of Operations Research 1.3
(1984), pp. 183–200.

[128] McKinley, G. ‘Superlogarithmic cliques in dense inhomogeneous random
graphs’. SIAM Journal on Discrete Mathematics 33.3 (2019), pp. 1772–1800.

[129] Mesnards, N. G. des, Hunter, D. S., Hjouji, Z. el, and Zaman, T. ‘Detecting bots
and assessing their impact in social networks’. 2018. arXiv: 1810.12398.

[130] Middendorf, M., Ziv, E., and Wiggins, C. H. ‘Inferring network mechanisms:
The Drosophila melanogaster protein interaction network’. Proceedings of the
National Academy of Sciences of the United States of America 102.9 (2005),
pp. 3192–3197.

[131] Mittelmann, H. D. and Vallentin, F. ‘High accuracy semidefinite program-
ming bounds for kissing numbers’. Experimental Mathematics 19.2 (2010),
pp. 174–178.

[132] Mitzenmacher, M. and Upfal, E. ‘Probability and computing’. 2nd edition.
Cambridge University Press, 2017.

[133] Mokken, R. J. ‘Cliques, clubs and clans’. Quality & Quantity 13.2 (1979),
pp. 161–173.

http://arxiv.org/abs/1810.12398


Bibliography 153

[134] Mongiovì, M., Bogdanov, P., Ranca, R., Papalexakisy, E. E., Faloutsos, C., and
Singh, A. K. ‘NetSpot: Spotting significant anomalous regions on dynamic
networks’. Proceedings of the 2013 SIAM International Conference on Data
Mining. 2013, pp. 28–36.

[135] Mossel, E., Neeman, J., and Sly, A. ‘Reconstruction and estimation in the
planted partitionmodel’. Probability Theory and Related Fields 162.3-4 (2015),
pp. 431–461.

[136] Mossel, E., Neeman, J., and Sly, A. ‘A proof of the blockmodel threshold con-
jecture’. Combinatorica 38.3 (2018), pp. 665–708.

[137] Müller, T. ‘Two-point concentration in random geometric graphs’. Combinat-
orica 28.5 (2008), pp. 529–545.

[138] Müller, T. and Staps, M. ‘The diameter of KPKVB random graphs’. Advances
in Applied Probability 51.2 (2019), pp. 358–377.

[139] Musin, O. R. ‘The problem of the twenty-five spheres’. Russian Mathematical
Surveys 58.4 (2003), pp. 794–795.

[140] Muthukrishnan, S. and Pandurangan, G. ‘The bin-covering technique for
thresholding random geometric graph properties’. Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms. 2005, pp. 989–998.

[141] Newman, M. E. J. ‘The structure of scientific collaboration networks’. Pro-
ceedings of the National Academy of Sciences 98.2 (2001), pp. 404–409.

[142] Newman, M. E. J. ‘Modularity and community structure in networks’. Pro-
ceedings of the National Academy of Sciences 103.23 (2006), pp. 8577–8582.

[143] Newman, M. E. J. and Girvan, M. ‘Finding and evaluating community struc-
ture in networks’. Physical Review E 69.2 (2004), p. 026113.

[144] Neyman, J. and Pearson, E. S. ‘On the problem of the most efficient tests
of statistical hypotheses’. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 231.694-706 (1933), pp. 289–
337.

[145] Neyman, J. and Pearson, E. S. ‘The testing of statistical hypotheses in relation
to probabilities a priori’. Mathematical Proceedings of the Cambridge Philo-
sophical Society 29.4 (1933), pp. 492–510.

[146] Norros, I. and Reittu, H. ‘On a conditionally Poissonian graph process’. Ad-
vances in Applied Probability 38.01 (2002), pp. 59–75.

[147] Park, Y., Priebe, C. E., and Youssef, A. ‘Anomaly detection in time series of
graphs using fusion of graph invariants’. IEEE Journal on Selected Topics in
Signal Processing 7.1 (2013), pp. 67–75.

[148] Pastukhov,G.,Veremyev,A., Boginski,V., andProkopyev,O.A. ‘Onmaximum
degree-based 𝛾-quasi-clique problem: Complexity and exact approaches’.Net-
works 71.2 (2018), pp. 136–152.

[149] Pattillo, J., Veremyev, A., Butenko, S., and Boginski, V. ‘On the maximum
quasi-clique problem’. Discrete Applied Mathematics 161.1-2 (2013), pp. 244–
257.



154 Bibliography

[150] Pattillo, J., Youssef, N., and Butenko, S. ‘On clique relaxation models in net-
work analysis’. European Journal of Operational Research 226.1 (2013), pp. 9–
18.

[151] Penrose, M. D. ‘Random geometric graphs’. Oxford University Press, 2003.
[152] Pensky, M. and Zhang, T. ‘Spectral clustering in the dynamic stochastic block

model’. Electronic Journal of Statistics 13.1 (2019), pp. 678–709.
[153] Resnick, S. I. and Samorodnitsky, G. ‘Asymptotic normality of degree counts

in a preferential attachment model’. Advances in Applied Probability 48.A
(2016), pp. 283–299.

[154] Shah,D. andZaman,T. ‘Rumors in a network:Who’s the culprit?’ IEEETrans-
actions on Information Theory 57.8 (2011), pp. 5163–5181.

[155] Spencer, J. H. and Florescu, L. ‘Asymptopia’. AmericanMathematical Society,
2014.

[156] Stegehuis, C., Hofstad, R. van der, and Leeuwaarden, J. S. H. van. ‘Scale-free
network clustering in hyperbolic and other randomgraphs’. Journal of Physics
A: Mathematical and Theoretical 52.295101 (2019).

[157] Tsybakov, A. B. ‘Introduction to nonparametric estimation’. Springer-Verlag
New York, 2009.

[158] Veremyev, A., Prokopyev, O. A., Butenko, S., and Pasiliao, E. L. ‘Exact MIP-
based approaches for finding maximum quasi-cliques and dense subgraphs’.
Computational Optimization and Applications 64.1 (2016), pp. 177–214.

[159] Wang, D., Yu, Y., and Rinaldo, A. ‘Optimal change point detection and local-
ization in sparse dynamic networks’. 2018. arXiv: 1809.09602.

[160] Wang, H., Tang, M., Park, Y., and Priebe, C. E. ‘Locality statistics for anomaly
detection in time series of graphs’. IEEE Transactions on Signal Processing
62.3 (2014), pp. 703–717.

[161] Watts, D. J. ‘Small Worlds: The Dynamics of Networks between Order and
Randomness’. Princeton University Press, 1999.

[162] Watts, D. J. and Strogatz, S. H. ‘Collective dynamics of ‘small-world’
networks’. Nature 393 (1998), pp. 440–442.

[163] Zeidanloo, H. R., Zadeh, M. J., Shooshtari, Amoli, P. V., Safari, M., and
Zamani, M. ‘A taxonomy of botnet detection techniques’. Proceedings of the
3rd IEEE International Conference on Computer Science and Information
Technology. Vol. 2. 2010, pp. 158–162.

[164] Zhao, Z., Chen, L., and Lin, L. ‘Change-point detection in dynamic networks
via graphon estimation’. 2019. arXiv: 1908.01823.

http://arxiv.org/abs/1809.09602
http://arxiv.org/abs/1908.01823


Summary

Thework in this thesis is centered around the analysis of community detectionmeth-
ods for inhomogeneous networks, as well the detection of other types of anomalies
such as testing for the presence of a botnet. We study how existing community detec-
tionmethods can be extended to a setting of inhomogeneous randomgraphs. This led
to new insights on the properties of the random graphs we study, and we show how
community detection methods can be extended to the inhomogeneous setting in an
optimal manner. The insights from this project also sparked the interest to consider a
related project about the detection of botnets. Lastly, we consider dynamically grow-
ing networks using the preferential attachment model. Below I will elaborate more
on each of these projects, and the publications that originated from them.

One of themain questionswe answer in this thesis is: “What is the smallest com-
munity that can theoretically be detected in an already inhomogeneous graph?”. The
initial work on this project resulted in novel insights about inhomogeneous graphs
and, in particular, about the behavior of cliques in these graphs. Remarkably, the
size of the largest clique is almost always the same, even in rather inhomogeneous
random graphs. We also extended these results to quasi-cliques and show that also
the quasi-clique is highly concentrated in dense inhomogeneous random graphs. We
were also able answer our initial question and characterized the smallest community
that can theoretically be detected in an inhomogeneous graph. We have done this by
proposing and analyzing a scan test and showing that this scan test is optimal in the
sense that it is not possible to detect any community that cannot also be detected by
our scan test.

Communities are typicallymodeled asmore densely connected subgraphswithin
a graph, but one is sometimes also interested in subgraphs that are different in other
ways. For example, one could be interested in an anomaly such as a botnet that tries to
mask its presence by not making too many connections. However, the connectivity
structure or underlying geometry of a botnet is often still rather different, and this
can be exploited to detect the presence of such a botnet. We formalized this idea and
introduced two tests that can both detect such a botnet. Furthermore, we also show
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that these tests are optimal in an asymptotic sense.
Many networks are dynamic and change over time, with some rules concerning

the evolution or growth of the graph. For thiswe consider the preferential attachment
model and study what happens when the attachment function changes after some
time. In particular, we investigated when it is possible to detect that the attachment
function has changed. We show that this is indeed possible, evenwhen there are only
few vertices with using the alternative attachment function.
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