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Abstract

This thesis aims to further develop historical simulation methods and focuses on the
market risk of interest rate options in the presence of negative interest rates. To
accommodate these negative interest rates, a typical solution is to shift the interest
rates to lift them into positive territory, where the conventional pricing functions
can be used again. We derive an adaptation of the SABR formula that allows us
to compare implied volatilities obtained with different shift parameters. Using this
method we are able to find risk factors that can be used to perform a historical
simulation without the need for numerical calibration algorithms. Furthermore,
we investigate if the currently applied methods can be improved by incorporating
additional risk factors that can account for changes in the shape of the volatility
smile.

Our results show that the studied historical simulation methods can provide accurate
prediction of both the value at risk and the expected shortfall. However, we do not
find strong evidence to support that modeling volatility smile changes improves the
accuracy of a historical simulation.
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Chapter 1

Introduction

Risk management is an essential part of running a financial institution. After a
period of extreme stress in the financial sector, such as during the European debt
crisis, risk management got renewed focus. Risk measurement is an important aspect
of risk management, because the risk measures are used both for the assessment
of internal trading risk limits and for the calculation of regulatory capital require-
ments. Therefore, developing accurate yet practical methods for risk measurement
is imperative to any organization that participates in the financial markets.

As a result of the European debt crisis, interest rates are, and have been, at an
historically low level. Recently, even the Euribor, a key reference rate, has fallen
into negative territory for the first time since its inception. Because such a scenario
was previously considered impossible, many of the pricing models applied in finance
work under the assumption that interest rates are positive. In particular, the market
for interest rate options has changed significantly with the advent of pricing models
allowing for negative interest rates. Since many risk measurement methods depend,
either explicitly or implicitly, on such pricing models, risk management cannot stay
behind and needs to update its methodologies.

From a regulatory perspective, institutions are required to calculate their capital
requirements based on their risk measures. The regulator attempts to quantify the
risk exposure in this manner, ensuring that potential future losses can be covered by
the retained capital. Since the Basel Committee on Banking Supervision obligated
banks to adopt the value at risk as risk measure for market risk, it has become the
most used risk measure in the financial industry. The widespread use of value at risk
has led to quite some criticism as it does not account for shortfall risk, which could
encourage more risk taking and higher losses. The deficiencies of value at risk have
eventually led to the decision to replace value at risk with a new risk measure, namely
the expected shortfall. While solving many of the problems associated with value
at risk, the expected shortfall is a more complex risk measure, and more advanced
methods might be needed to estimate it accurately.
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1.1 Research Problem

The main purpose of this thesis is to determine the accuracy of the historical simula-
tion method in estimating the value at risk and the expected shortfall. In particular,
we will investigate which risk factors perform best on portfolios with interest rate
options. Because interbank interest rates have become negative in recent months,
this task requires the development of novel methods capable of estimating the value
a risk and the expected shortfall, even in markets with negative interest rates.

The second, and perhaps more interesting question, is whether modeling changes in
the shape of the volatility smile by additional risk factors can significantly increase the
estimation accuracy. Since the expected shortfall requires more accurate estimation
of tail events, we are specifically interested in determining if the addition of more risk
factors can improve the accuracy for the expected shortfall. To this end, we need to
derive risk factors which model the shape of the volatility and can be used efficiently
within a historical simulation. This is of practical importance, since computationally
inefficient methods generally become infeasible when used on large portfolios, as is
the case for Rabobank.

1.2 Delimitations

This thesis will only focus on the estimation of risk measures using the historical
simulation method. As such, this report tries to determine which risk factors are
the most representative for a portfolio consisting of interest rate options and it is
not meant to compare historical simulation to other methods.

Another limitation is associated with the implementation of the backtests. Since
the estimates are computed for hypothetical positions opened and closed on a daily
interval, which is a drastic simplification compared to real life positions. Furthermore,
the position pricing is imperfect as a decline in time to maturity is ignored in the
scenarios generated by the historical simulation. However, since our estimates are
based on one day ahead forecasts, these effect will be negligible, since the smallest
maturity used in this thesis is one year.

1.3 Thesis Structure

The remainder of this report is structured as follows. In Chapter 2, we develop the
necessary background theory for interest rate options. We specifically focus on the
theory needed to price these options, and present multiple pricing methods, which
are required for later parts of this report. Chapter 3 continues with the introduction
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of risk measures. We present the historical simulation method used to estimate the
risk measures in this thesis and also provide the statistical tools necessary to assess
the estimation quality.

Using the background theory, Chapter 4 is used to derive risk factors that can be
used in a historical simulation to provide estimates for the value at risk and the
expected shortfall of interest rate options, even when the interest rates are negative.
In Chapter 5, we apply our methods on recent market data to assess the quality of
each method. Chapter 6 reports the conclusions and recommendations of this thesis.
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Chapter 2

Pricing Interest Rate Instruments

In this chapter we introduce some basic interest rate instruments and derive their
pricing functions. To this end, we will show how these instruments can be related
and introduce some important probability measures. The theory in this chapter will
then form the basis for the development of the value at risk and expected shortfall
models in Chapter 4.

Throughout this thesis we assume an arbitrage free and complete market where
non-dividend paying securities are traded continuously inside a finite horizon [0, T ].
We assume that the prices of these instruments are defined on a probability space
(Ω,F ,P), where Ω is the sample space, F is a σ-algebra on Ω and P is a probability
measure on the measurable space (Ω,F). The information available at time t ∈ [0, T ]
is modeled by a filtration Ft = σ{W (s), s ∈ [0, t]} possibly augmented to satisfy the
usual conditions, and where W is a m-dimensional Brownian motion.

2.1 Interest Rates

We start this section with the definition of the zero-coupon bond. This is an essential
instrument since we can express all interest rates in terms of one, or more, zero-
coupon bonds, which in turn allows us to relate various types of interest rates.

Definition 2.1 (Zero-coupon bond). A T -maturity zero-coupon bond is a contract
that guarantees the holder one unit of currency to be paid at maturity T . The time
t value of this contract is denoted by P (t, T ).

Clearly, we should have P (T, T ) = 1. We also assume that P (t, T ) > 0, and for
technical reasons that will be made clear later, we also require that the function
T 7→ P (t, T ) is differentiable.

Another important property of the zero-coupon bond lies in the fact that we can
compare cash flows at different dates in the future. If we multiply a time T cash
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flow by the zero-coupon bond P (t, T ), we get the time t value of this cash flow. This
technique is called discounting and we will use it extensively when determining the
value of interest rate instruments.

Before we introduce interest rates, we start by adding some structure to time instants
and time increments. A tenor structure is a set of real numbers representing all time
points of interest for our model.

Definition 2.2 (Tenor structure). A tenor structure (Ti)i∈{0,...,N} is an increasing
sequence of non-negative real numbers, that satisfies

0 ≤ T0 < T1 < . . . < TN <∞.

Furthermore, the length of the interval between Ti and Ti+1 is often called the tenor,
and is given by

τi = Ti+1 − Ti, for i ∈ {0, . . . , N − 1}.

In most cases we take T0 = 0 which should be interpreted as the current time. In
most cases we also assume that the tenor is constant, that is τi = τ .

Remark 2.3 (Day count convention). In our definition of a tenor structure all dates
are real numbers. In practice, this is not the case and dates are represented as
day/month/year. In this case, it might be unclear how to compute the value of the
tenors τi = Ti+1 − Ti. To avoid confusion each market has specified a so called day
count convention that prescribes how the tenors should be computed.

The most common day count conventions are called Act/360 and Act/365 where τi
is calculated as the actual number of days between Ti and Ti+1 divided by 360, and
365, respectively. 4

2.1.1 Libor Rates

In general, an interest rate is the amount of money a borrower has to pay to lend
money for a specific amount of time expressed as a percentage of the total amount
borrowed. In this section we discuss InterBank Offered Rates (Ibor); these are the
rates at which large financial institutions are willing to lend money to each other.
There are a few different Ibor rates that are fixed by different entities and the fixing
entity is differentiated by the prefix. For instance, Libor refers to London InterBank
Offered Rate that is fixed by the Intercontinental Exchange and Euribor fixings
are determined by the European Banking Federation. Typically Libor serves as a
reference for different kinds of products. Although we consider Libor in this section,
the same reasoning can be applied to other interbank offered rates.

Consider a large financial institution borrowing one unit of currency at time t that
has to be paid back with interest at a later time T1. At time t the bank receives one

6



unit of currency and at time T1 it has to pay 1 + τ0L(t, T1) units of currency, where
L(t, T1) denotes the time t Libor rate. Discounting the time T1 cash flow we see that
the Libor rate L(t, T1) has to satisfy the relation

P (t, T1)(1 + τ0L(t, T1)) = 1. (2.1)

Definition 2.4 (Libor rate). The Libor rate with maturity T1 is the rate that solves
equation (2.1) and is given by

L(t, T1) = 1
T1 − t

( 1
P (t, T1) − 1

)
. (2.2)

Instead of borrowing money right now, we might be interested in locking in an
interest rate over a period [Ti, Ti+1] in the future. This is typically done through a so
called forward rate agreement (FRA). A FRA allows the holder to exchange a fixed
rate K for a floating rate L(Ti, Ti+1). So at time Ti+1, the holder has to pay τiK
and receives τiL(Ti, Ti+1) units of currency. Therefore, the cash flow of the contract
at time Ti+1 is given by

τi(L(Ti, Ti+1)−K) = 1
P (Ti, Ti+1) − 1− τiK. (2.3)

Note that, although the cash flow takes place at time Ti+1 it is already determined
at time Ti.

The term 1/P (Ti, Ti+1) in equation (2.3) is worth one unit of currency at time Ti
by definition of the zero-coupon bond. Therefore 1/P (Ti, Ti+1) units of currency at
time Ti+1 is worth 1 unit of currency at time Ti, which is equivalent to P (t, Ti) units
of currency at time t. By discounting the other terms in equation (2.3), we find that
the time t value of the FRA is given by

V i
FRA(t) = P (t, Ti)− P (t, Ti+1)(1 + τiK). (2.4)

This brings us to the definition of forward Libor rates. The forward Libor rate is
the Libor rate over a future interval [Ti, Ti+1] that is consistent with market prices.
Therefore, the forward Libor rate is the value of K in equation (2.4) such that the
forward rate agreement has a fair value at time t, so if V i

FRA(t) = 0.

Definition 2.5 (Forward Libor rate). The forward Libor rate for the expiry Ti and
maturity Ti+1 as seen at time t is given by

Li(t) = L(t;Ti, Ti+1) = 1
τi

(
P (t, Ti)
P (t, Ti+1) − 1

)
. (2.5)
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By rewriting equation (2.4), we can express the time t value of a FRA more elegantly
in terms of the forward rate

V i
FRA(t) = τiP (t, Ti+1)(Li(t)−K). (2.6)

2.1.2 Swap Rates

A generalization of the FRA to multiple time intervals is a fixed-for-floating swap (also
known as a payer swap). A swap is thus a contract to exchange payments between
a fixed rate K and a floating rate L(Ti, Ti+1) at every instant of a predefined set of
times Tn+1, . . . , Tm. Note that similar to a FRA the payments are fully determined
at times Ti but paid at times Ti+1. When the swap starts immediately, i.e. n = 0,
we call the swap spot starting, otherwise we call it a forward starting swap. The
length of the swap Tm − Tn is called the tenor.

Alternatively, when the floating rate is paid and the fixed rate is received, we have a
floating-for-fixed swap (also known as a receiver swap). In this section we show how
to value a payer swap; a receiver swap can be valued in a similar manner.

The value of a payer swap is simply the sum of multiple FRAs, so by equation (2.6)
we find the time t value of a payer swap

V n,m
swap(t) =

m−1∑
i=n

V i
FRA(t)

=
m−1∑
i=n

τiP (t, Ti+1)(Li(t)−K)

= P (t, Tn)− P (t, Tm)−
m−1∑
i=n

τiP (t, Ti+1)K. (2.7)

Similar to forward rates, we can define swap rates. The swap rate is the value for K
in equation (2.7) such that the swap has fair value, that is V n,m

swap(t) = 0.

Definition 2.6 (Swap Rate). The swap rate Sn,m(t) is given by

Sn,m(t) = P (t, Tn)− P (t, Tm)
An,m(t) , (2.8)

where An,m(t) is called the annuity of the swap and is given by

An,m(t) =
m−1∑
i=n

τiP (t, Ti+1). (2.9)

Note that by rewriting equation (2.7) we can also express the swap’s value in terms
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of the swap rate
V n,m
swap(t) = An,m(t)(Sn,m(t)−K). (2.10)

2.2 Measures

The numeraire is an important concept from the theory of arbitrage free pricing and
can be any non-dividend paying asset with positive price process, N(t) > 0 for all t.
The importance of a numeraire comes from the fundamental theorem of asset pricing.
This theorem states that for every numeraire there exists a measure Q ∼ P that is
equivalent to the real-world probability measure P, such that the time t value of a
portfolio V (t) relative to this numeraire is a martingale [9, 10], that is

V (t)
N(t) = EQ

t

[
V (T )
N(T )

]
, (2.11)

where EQ
t denotes the expectation under Q conditional on Ft.

The choice of numeraire can greatly simplify calculations. In this section we introduce
some numeraires and their related measures and show why they are particularly useful
in an interest rate context.

2.2.1 T -Forward Measure

A zero-coupon bond is a positive non-dividend paying asset and therefore we can use
it as a numeraire. The corresponding measure is then called the T -forward measure
[12].

Definition 2.7 (Ti-forward measure). The Ti-forward measure QTi is the measure
that makes the process V (t)/P (t, Ti) a martingale. That is

V (t) = P (t, Ti)Eit
[
V (T )
P (T, Ti)

]
= P (t, Ti)Eit [V (T )] , for all T ≤ Ti, (2.12)

where V (t) is the time t value of a portfolio and Eit is the expectation under the
Ti-forward measure QTi conditional on Ft.

The reason that the T -forward measure is convenient to work with is that the forward
rate is a martingale under this measure.

Lemma 2.8. The forward rate Li(t) is a martingale under the Ti+1-forward measure
QTi+1. That is

Ei+1
t [Li(T )] = Li(t), for all T ≤ Ti. (2.13)
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Proof. By definition of forward rates and the forward measure we have

Ei+1
t [Li(T )] = 1

τi
Ei+1
t

[
P (T, Ti)
P (T, Ti+1)

]
− 1 = 1

τi

(
P (t, Ti)
P (t, Ti+1) − 1

)
= Li(t).

2.2.2 Swap Measure

The annuity of a swap is a linear combination of zero-coupon bonds so it can also be
seen as a positive non-dividend-paying asset. Therefore, we can also use the annuity
as a numeraire. The martingale measure induced by the annuity numeraire is called
the swap measure or annuity measure [15].

Definition 2.9 (Swap measure). The swap measure Qn,m is the measure that makes
the process V (t)/An,m(t) a martingale. That is

V (t) = An,m(t)En,mt

[
V (T )

An,m(T )

]
, for all T ≤ Tn,

where V (t) is the time t value of some portfolio and En,mt is the expectation under
the swap measure Qn,m conditional on Ft.

The main advantage of working with the swap measure is that the swap rate Sn,m(t)
is a martingale under this measure.

Lemma 2.10. The swap rate Sn,m(t) is a martingale under the swap measure Qn,m.
That is

En,mt [Sn,m(T )] = Sn,m(t), for all T ≤ Tn.

Proof. Define V (t) = P (t, Tn)− P (t, Tm). It then follows by definition of the swap
measure that V (t)/An,m(t) is a martingale under this measure. Therefore, we have

En,mt [Sn,m(T )] = En,mt

[
P (T, Tn)− P (T, Tm)

An,m(T )

]
= P (t, Tn)− P (t, Tm)

An,m(t) = Sn,m(t).

2.3 Options

An option is a contract which gives the holder the right, but not the obligation, to
buy or sell an underlying instrument at a specified price at or before a later date.
Typically, the pre-agreed price is called the strike and the date is called the options
expiry. There are two types of option. A call option gives the holder the right to
buy, and a put option gives the holder the right to sell, the underlying instrument
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for the strike price at expiry. In this section we only consider European options, this
means that the option can only be exercised on, and not before, expiry. We then
give two examples of options on interest rates. Caps and floors are options where the
underlying instrument is the Libor rate and swaptions have a swap as underlying
instrument.

2.3.1 Caps and Floors

A caplet gives the holder the right, but not the obligation, to exchange the Libor
rate for some fixed rate. This enables the holder to hedge against rising interest
rates. The payoff of a caplet is thus similar to that of a FRA, the difference being
that payments are only exchanged when they are beneficial to the caplet holder.
Therefore, the cash flow of a caplet with expiry Ti, maturity Ti+1 and strike rate K
is given by

τi(L(Ti, Ti+1)−K)+.

Note that this payoff is known at expiry Ti and not before. However, the payments
are made one time step later at Ti+1. The time t value of a caplet can then be
obtained by discounting the expected future cash flow.

Definition 2.11 (Caplet value). The time t value of a caplet with expiry Ti, maturity
Ti+1 and strike K is given by

V i
caplet(t) = τiP (t, Ti+1)Ei+1

t

[
(L(Ti, Ti+1)−K)+

]
. (2.14)

It is not possible to compute the expectation in equation (2.14) without making
additional assumptions on the dynamics of the forward rate L(Ti, Ti+1). In the next
section we show some models that will allow us to calculate the expectation and
hence determine the value of a caplet.

Caplets are typically not quoted in the market directly. They are quoted as a
portfolio consisting of multiple consecutive caplets, called caps. The expiries of these
caplets are then called the reset dates. So a cap for the period [Tn, Tm] has resetting
dates Tn, . . . , Tm−1. We find its time t value simply by summing the values of each
individual caplet.

Definition 2.12 (Cap value). The time t value of a cap with strike K that resets
at times Tn, . . . , Tm−1 is given by

V n,m
cap (t) =

m−1∑
i=n

V i
caplet(t) =

m−1∑
i=n

τiP (t, Ti+1)Ei+1
t

[
(L(Ti, Ti+1)−K)+

]
. (2.15)
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The counterpart of a caplet is a floorlet, allowing the holder to hedge against falling
interest rates. The cash flow of a floorlet is given by

τi(K − L(Ti, Ti+1))+.

Note that similar to a caplet the cash flow of a floorlet is fully determined at time
Ti but payments are made at time Ti+1. Again, by discounting the expected future
cash flows, we find the time t value of a floorlet.

Definition 2.13 (Floorlet value). The time t value of a floorlet with expiry Ti,
maturity Ti+1 and strike K is given by

V i
floorlet(t) = τiP (t, Ti+1)Ei+1

t

[
(K − L(Ti, Ti+1))+

]
. (2.16)

Also floorlets are not quoted in the market directly, but sold as a portfolio of multiple
consecutive floorlets, called a floor. The value of a floor is determined by the sum of
each individual floorlet.

Definition 2.14 (Floor value). The time t value of a floor with strike K and
resetting at Tn, . . . , Tm−1 is given by

V n,m
floor(t) =

m−1∑
i=n

V i
floorlet(t) =

m−1∑
i=n

τiP (t, Ti+1)Ei+1
t

[
(K − L(Ti, Ti+1))+

]
. (2.17)

A useful relation linking the prices of caps and floors with swaps is given by the
following lemma. This lemma is typically referred to as the put-call parity.

Lemma 2.15. Caps and floors are related to a swap by the relation

V n,m
cap (t)− V n,m

floor(t) = V n,m
swap(t). (2.18)

Proof. Consider the cash flows at times Ti+1 with i = {n, . . . ,m − 1} individually.
Then the left hand side of equation (2.18) consists of the cash flow of a caplet and a
floorlet, which is given by

τi(L(Ti, Ti+1)−K)+ − τi(K − L(Ti, Ti+1))+ = τi(L(Ti, Ti+1)−K).

This is precisely the cash flow of a forward rate agreement. Since all cash flows are
equal, we conclude that the prices are also equal.

It is market convention to call a cap or floor at-the-money (ATM) if its strike is
equal to the forward swap rate of the underlying swap. So, if we exercised the swap
today, it would not make or lose any money. Similarly, if exercising the cap today
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would make money, we call it in-the-money (ITM) and if it would lose money, we
call it out-of-the-money (OTM). Hence, a cap or floor is ATM when

K = Sn,m(t) = P (t, Tn)− P (t, Tm)
An,m(t) .

When K > Sn,m(t), we say that a cap is out-of-the-money (OTM) and a floor is
in-the-money (ITM). Similarly, when K < Sn,m(t) a cap is ITM and a floor is OTM.

2.3.2 Swaptions

A swap option, or more commonly known as swaption, is an option giving the right,
but not the obligation, to enter an interest rate swap at expiry. Typically, the expiry
of the option coincides with the first reset date of the underlying swap, and the
length of the swap is called the tenor. Depending on whether the swaption is a call
or a put option, we call it a payer swaption or a receiver swaption, respectively. In
this section we consider a payer swaption, but a similar reasoning can be applied to
receiver swaptions.

By equation (2.10), the time Tn payoff of the swaption, resetting at times Tn, . . . , Tm−1
and with strike K, is given by

An,m(Tn)(Sn,m(Tn)−K)+.

Using the swap measure Qn,m, we can conveniently discount the future expected
payoff to get the time t value of a swaption.

Definition 2.16 (Payer swaption value). The time t value of a swaption, with strike
K and resetting at Tn, . . . , Tm−1, is given by

Vswaption(t) = An,m(t)En,mt

[
An,m(Tn)(Sn,m(Tn)−K)+

An,m(Tn)

]
(2.19)

= An,m(t)En,mt
[
(Sn,m(Tn)−K)+

]
.

Similar to caps and floors, we call a swaption at-the-money (ATM) if exercising it
wouldn’t make or lose any money. Similarly, if a swaption that is exercised today
would make money, we call it in-the-money (ITM) and if it would lose money, we
call it out-of-the-money (OTM). Hence, a payer swaption is ATM when

K = Sn,m(t) = P (t, Tn)− P (t, Tm)
An,m(t) .

When K < Sn,m(t) it is ITM and when K > Sn,m(t) it is OTM.
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2.4 Option Pricing

In the previous section, we have seen that the forward Libor rate Li(t) and forward
swap rate Sn,m(t) are martingales under their corresponding measures. In this section,
we let F (t) be either the forward Libor rate or forward swap rate. We assume that
we are working in the measure that makes F (t) a martingale and let N(t) be the
numeraire corresponding to this measure. So the martingale representation theorem
shows that

dF (t) = c(t, . . .)dW (t), F (0) = F0, (2.20)

where W (t) is Brownian motion and the coefficient c can be deterministic or random
and may depend on any information that can be resolved at time t. Note that
the dynamics in equation 2.20 don’t have a drift term, since the forward rate is a
martingale.

When pricing European options, we concern ourselves with either the evaluation of

C(F0,K, T ) = N(0)E0
[
(F (T )−K)+

]
, (2.21)

for European call options or

P (F0,K, T ) = N(0)E0
[
(K − F (T ))+

]
, (2.22)

for European put options. To evaluate these expectations, we need to make additional
assumptions about the coefficient c in equation 2.20. In this section we discuss several
models that allow us to compute these expectations.

2.4.1 Black’s Model

In 1976, Fischer Black introduced what is now probably the most famous model
in financial mathematics [6]. In Black’s model, we assume that the coefficient
c(t, . . .) = σBF (t) is deterministic but depends on the current value of the forward
rate F (t) and one parameter σB called Black’s volatility. Therefore, the dynamics
of equation 2.20 become

dF (t) = σBF (t)dW (t), F (0) = F0. (2.23)

An application of Itō’s lemma [37] shows that

d log(F (t)) = −1
2σB

2dt+ σBdW (t), F (0) = F0. (2.24)

14



Hence, F (t) has a log-normal distribution with location log(F0)− σB2t/2 and scale
σB
√
t. Because of this, Black’s model is sometimes also referred to as the log-normal

model. It turns out that when using the dynamics from equation (2.23), we can
derive an analytical solution for the price of a European call option in equation (2.21).

Theorem 2.17 (Black’s formula). Let F (t) follow the dynamics from equation (2.23).
Then the price of a European call option is given by

CB(F0,K, T ;σB) = N(0)E0
[
(F (T )−K)+

]
(2.25)

= N(0) (F0Φ(d+)−KΦ(d−)) ,

where Φ is the standard normal cumulative distribution function and

d± =
log(F0/K)± 1

2σB
2T

σB
√
T

.

Proof. F (T ) has a log-normal distribution with mean µ̄ = log(F0) − σB2T/2 and
standard deviation σ̄ = σB

√
T . Therefore, the expectation in equation (2.25) is

E0
[
(F (T )−K)+

]
= E0 [F (T )−K |F (T ) > K]P0 (F (T ) > K) (2.26)

= E0 [F (T ) |F (T ) > K]P0 (F (T ) > K)−KP0 (F (T ) > K)

= exp
(
µ̄+ 1

2 σ̄
2
)

Φ
(
µ̄+ σ̄2 − log(K)

σ̄

)
−KΦ

(
µ̄− log(K)

σ̄

)
= F0Φ(d+)−KΦ(d−),

where the partial expectation is given by [44]

E0 [F (T ) |F (T ) > K]P0 (F (T ) > K) = exp
(
µ̄+ 1

2 σ̄
2
)

Φ
(
µ̄+ σ̄2 − log(K)

σ̄

)
.

Multiplying equation (2.26) by N(0) proves the result.

By following the same steps as in Theorem 2.17, we can derive Black’s pricing formula
for a European put option from equation (2.22).

Theorem 2.18 (Black’s formula). Let F (t) follow the dynamics from equation (2.23).
Then the price of a European put option is given by

PB(F0,K, T ;σB) = N(0)E0
[
(F (T )−K)+

]
(2.27)

= N(0) (KΦ(−d−)− F0Φ(−d+)) ,

where Φ and d± are as given in Theorem 2.17.

Proof. Follows by a similar argument as Theorem 2.17.
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Black’s model can also be used to quantify the discrepancy between the current
forward rate F0 and the strike of an option K. This discrepancy is typically called
the moneyness and for Black’s model it is defined as

Definition 2.19 (Log-moneyness). The log-moneyness M(F0,K) is the logarithmic
distance between the forward rate F0 and the strike K,

M(F0,K) = log(K/F0). (2.28)

In Section 2.3 we explained when an option is in-the-money or out-of-the-money.
Using Definition 2.19, we can quantify how much a certain options is in-the-money
or out-of-the-money. That is, when M(F0,K) < 0, a call option is in-the-money and
a put option is out-of-the-money. Similarly, when M(F0,K) > 0, a call option is
out-of-the-money and a put option is in-the-money. The case M(F0,K) = 0 occurs
when the current forward rate F0 equals the strike of the option K and is called
at-the-money.

2.4.1.1 Shifted Black’s Model

When assuming the dynamics of Black’s model from equation (2.23), the current
forward rate F0 and strike K must be positive. Recently, interest rates in the
eurozone have become negative, indicating that we cannot use Black’s model as it is.
A frequently used solution is to add a small quantity to both the forward rate and
the strike such that they are no longer negative, effectively shifting the distribution
of F (t). This class of models is typically referred to as shifted Black’s model and
has the dynamics

dF (t) = σB
sb(F (t) + sb)dW (t), F (0) = F0, (2.29)

where sb is called the shift parameter. A superscript sb is added to the Black
volatility σBsb to show that this parameter belongs to the shifted version of Black’s
model.

Modeling a forward rate with the shifted version of Black’s model, it is possible for
the forward rate to be in the interval (−sb,∞). So by choosing sb positive, we can
effectively allow forward rates to become as negative as we want.

It turns out that we can still use Black’s formula from Theorems 2.17 and 2.18 to
compute the price of European call and put options.
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Theorem 2.20. Let F (t) follow the dynamics from equation (2.29). Then the price
of a European call and put options are respectively given by

CB(F0 + sb,K + sb, T ;σBsb) and PB(F0 + sb,K + sb, T ;σBsb), (2.30)

where CB and PB are Black’s formula from Theorem 2.17 and Theorem 2.18.

Proof. When F (t) follows the dynamics of shifted Black’s model from equation 2.29,
then X(t) = F (t) + sb follows the dynamics of Black’s model from equation 2.23.
Hence, the price of a European call option is given by

N(0)E0
[
(F (T )−K)+

]
= N(0)E0

[
(X(T )− (K + sb))+

]
= CB(X(0),K + sb, T ;σBsb)
= CB(F0 + sb,K + sb, T ;σBsb).

Similarly, the price of a European put option is given by

N(0)E0
[
(K − F (T ))+

]
= PB(F0 + sb,K + sb, T ;σBsb).

Note that for every shift parameter, we effectively have a different model. So, σB
and σBsb will yield different option prices, unless sb = 0 of course.

When using the shifted Black’s model, we have to adjust the moneyness accordingly.
To this end, we define the shifted log-moneyness as follows

Definition 2.21 (Shifted log-moneyness). The shifted log-moneyness M(F0,K) is
the logarithmic distance between the shifted forward rate F0 + sb and the shifted
strike K + sb,

M(F0,K) = log((K + sb)/(F0 + sb)). (2.31)

2.4.2 Bachelier’s Model

The first model in mathematical finance was developed in 1900 by Louis Bachelier [1].
Although martingale pricing theory did not yet exist in that time, we can formulate
his model within this framework.

Instead of assuming a log-normal distribution, Bachelier proposed a model where
the forward rates have a normal distribution. This has the benefit that the model
can also be applied when the forward rate or strike is negative. Since some interest
rates in the eurozone have become negative, this model is gaining popularity in the
financial industry. In the framework of martingale pricing theory, Bachelier’s model
assumes that the coefficient c(t, . . .) = σN is deterministic and constant. Therefore
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the dynamics of equation 2.20 become

dF (t) = σNdW (t), F (0) = F0. (2.32)

This is easy to solve and we see that F (t) = F (0)+σNW (t). Hence, F (t) has a normal
distribution with mean F0 and standard deviation σN

√
t. Because of this, Bachelier’s

model is sometimes also referred to as the normal model and the parameter σN is
referred to as the normal volatility.

When assuming the dynamics of Bachelier’s model from equation (2.32), we can
derive an analytical solution for the price of a European call option from equa-
tion (2.21).

Theorem 2.22 (Bachelier’s formula). Let F (t) follow the dynamics from equa-
tion (2.32). Then the price of a European call option is given by

CN(F0,K, T ;σN) = N(0)E0
[
(F (T )−K)+

]
(2.33)

= N(0)σN
√
T (dΦ(d) + φ(d)) ,

where Φ and φ are the standard normal cumulative distribution function and standard
normal density function, respectively, and

d = F0 −K
σN
√
T
.

Proof. In Bachelier’s model F (T ) has a normal distribution with mean F0 and
standard deviation σN

√
T . Therefore, the expectation in equation (2.33) is

E0
[
(F (T )−K)+

]
= E0 [F (T )−K |F (T ) > K]P0 (F (T ) > K) (2.34)

= E0 [F (T ) |F (T ) > K]P0 (F (T ) > K)−KP0 (F (T ) > K)

= F0Φ
(
F0 −K
σN
√
T

)
+ σ
√
T φ

(
F0 −K
σN
√
T

)
−KΦ

(
F0 −K
σN
√
T

)
= σN

√
T (dΦ(d) + φ(d)) ,

where the conditional expectation is given by [44]

E0 [F (T ) |F (T ) > K]P0 (F (T ) > K) = F0Φ
(
F0 −K
σN
√
T

)
+ σN

√
T φ

(
F0 −K
σN
√
T

)
.

Multiplying equation (2.34) by N(0) proves the result.

By following the same steps as in Theorem 2.22 we can derive the pricing formula
for a European put option from equation (2.22).
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Theorem 2.23 (Bachelier’s formula). Let F (t) follow the dynamics from equa-
tion (2.32). Then the price of a European put option is given by

PN(F0,K, T ;σN) = N(0)E0
[
(K − F (T ))+

]
(2.35)

= N(0)σN
√
T (−dΦ(−d) + φ(−d)) .

where Φ, φ and d are as given in Theorem 2.22.

Proof. Follows by a similar argument as Theorem 2.22.

Bachelier’s model can also be used to quantify the discrepancy between the current
forward rate F0 and the strike of an option K. This discrepancy is typically called
the simple moneyness and is defined as

Definition 2.24 (Simple moneyness). The simple moneyness M(F0,K) is the dis-
tance between the forward rate F0 and the strike K,

M(F0,K) = K − F0. (2.36)

An option with moneyness M(F0,K) = 0 is called at-the-money. When M(F0,K) <
0, a call option is called in-the-money and a put option is out-of-the-money. Similarly,
when M(F0,K) > 0, a call option is called out-of-the-money and a put option is
in-the-money.

2.4.3 SABR Model

European options are often priced using Bachelier’s or Black’s model. In these models,
there is a one-to-one relation between the price of an option and the volatility
parameter. Consequently, option prices are often quoted by stating the implied
volatility σN or σB, the unique value of the volatility which yields the option’s
price when used in Bachelier’s or Black’s model, respectively. However, we often
observe that the distribution of forward rates have heavier tails than implied by
these models. This has the effect that there is no single implied volatility parameter
anymore but rather a different implied volatility for every strike. In practice, the
resulting curve resembles one of the two shapes shown below and is known as the
volatility smile. Figure 2.1a shows that price of in-the-money or out-of-the-money
option is relatively higher than the price of the corresponding at-the-money option,
indicating heavier tails than predicted by Bachelier’s or Black’s model. Alternatively,
when the volatility smile has a shape as in Figure 2.1b, it indicates that market
participants want to protect themselves more against large downward movements,
resulting in the higher volatilities for in-the-money call and out-of-the-money put
options.
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Managing the risks that arise from movements in the volatility smile is critical to fixed
income trading desks, since these desks usually have large exposures across a wide
range of strikes. To correctly capture the dynamics of the volatility smile, Hagan et al.
[27] developed the SABR model, a stochastic volatility model in which the forward
rate and volatility are correlated. So, the coefficient c(t, . . .) from equation (2.20) is
no longer deterministic. The dynamics of the SABR model are given by

dF (t) = α(t)(F (t))βdW1(t), F (0) = F0, (2.37)
dα(t) = να(t)dW2(t), α(0) = α,

d〈W1,W2〉(t) = ρdt,

where β ∈ [0, 1], the initial volatility α > 0, the volatility of volatility ν > 0 and
correlation ρ ∈ (−1, 1). The β parameter is typically chosen by traders based on
their believes on the evolution of the forward rate. The other three parameters are
then chosen such that we match the market prices ‘as well as possible’ across all
strikes.
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(a) Symmetric volatility smile. The im-
plied volatility increases as the strike
moves away from the forward rate.
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(b) Skewed volatility smile. The implied
volatility decreases as the strike in-
creases.

Figure 2.1: Typical shapes that arise when the implied volatility is plotted against
the strike for options with the same expiry.

In general, there is no known closed form solution for the European option prices
under the SABR model. However, one of the reasons that the SABR model is so
popular is that Hagan et al. [27] derived approximating solutions for the normal and
Black implied volatilities. These can then used as input in Bachelier’s and Black’s
formula. The approximating solution of Hagan et al. [27] was later improved by
other researchers. In this thesis we use the version of Berestycki and Oblój [28, 35].
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Theorem 2.25 (SABR formula). Let F (t) follow the dynamics from equation (2.37).
Then the Black implied volatility σB is approximated by

σB(F0,K, T ;α, ρ, ν, β) = IB0 (1 + IB1 T ), (2.38)

where

IB0 = ν log(F0/K)

log
(√1−2ρz+z2+z−ρ

1−ρ
) ,

IB1 = (1− β)2

24
α2

(F0K)(1−β) + 1
4

βαρν

(F0K)(1−β)/2 + 2− 3ρ2

24 ν2,

z =


ν

α

F 1−β
0 −K1−β

1− β if β < 1,
ν

α
log(F0/K) if β = 1.

Proof. This was derived by Obloj [35], based on the theory from Berestycki [28].

We can derive a similar approximating solution for the normal implied volatility σN
of Bachelier’s model, as shown by the following Theorem.

Theorem 2.26 (SABR formula). Let F (t) follow the dynamics from equation (2.37).
Then the normal implied volatility σN is approximated by

σN(F0,K, T ;α, ρ, ν, β) = IN0 (1 + IN1 T ), (2.39)

where

IN0 = ν(F0 −K)

log
(√1−2ρz+z2+z−ρ

1−ρ
) ,

IN1 = β(β − 2)
24

α2

(F0K)(1−β) + 1
4

βαρν

(F0K)(1−β)/2 + 2− 3ρ2

24 ν2,

where z is as given in Theorem 2.25.

Proof. Note that by setting β = 0 and ν = 0 the dynamics of the SABR model
from equation (2.37), become equal to the dynamics of Bachelier’s model from
equation (2.32). So, by using Theorem 2.25 with β = 0 and ν = 0, we have an
approximation of Black’s implied volatility for Bachelier’s model
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lim
ν→0
β→0

σB(F0,K, T ;σN, ρ, ν, β) = log(F0/K)
F0 −K

σN

(
1 + 1

24
σN

2

F0K
T

)
. (2.40)

We can find the normal implied volatility σN for the SABR model by setting σN =
IN0 (1 + IN1 T ) in equation (2.40). Through O(T 2) this yields

IB0

(
1 + IB1 T

)
= log(F0/K)

F0 −K
IN0

(
1 +

(
IN1 + 1

24
(IN0 )2

F0K

)
T

)
+O(T 2). (2.41)

Solving for IN0 and IN1 yields

IN0 = F0 −K
log(F0/K)I

B
0 , (2.42)

IN1 = IB1 −
1
24

(IN0 )2

F0K
= IB1 −

1
24

α2

(F0K)1−β ,

where we used a similar approximation as Hagan et al. [27] did in their derivation
of IN1 . They use that for small ν, we have

IN0 ≈ α(F0K)β/2.

Plugging IB0 and IB1 from Theorem 2.25 into equation (2.42) proves the result.

In the SABR model, the initial volatility α mainly affects the level of the volatility
smile as can be seen in Figures 2.2a and 2.2b. A higher value of α yields a higher level
of the volatility smile. The correlation ρ primarily affects the slope, where a lower
value of ρ gives a steeper downward sloping smile, as can be seen in Figures 2.2c
and 2.2d. The volatility of volatility ν mainly affects the curvature of the volatility
smile as can be seen in Figures 2.2e and 2.2f.

Typically, we observe the implied volatilities σ̂B(F0,Ki) or σ̂N(F0,Ki) for a finite
set Ki, i = 1, . . . , n, and fixed maturity T in the market. These are effectively the
prices market participants are willing to buy or sell that specific option. In practice,
we want to find SABR parameters that match these quotes. This process is called
calibration and we do this by minimizing the sum of squared error’s between market
quoted implied volatilities and implied volatilities computed by the SABR model.
So the SABR model parameters that match the market can be found by solving the
optimization problem

arg min
α,ρ,ν

n∑
i=1

(σ̂B(F0,Ki)− σB(F0,K, T ;α, ρ, ν, β))2 , (2.43)

or
arg min
α,ρ,ν

n∑
i=1

(σ̂N(F0,Ki)− σN(F0,K, T ;α, ρ, ν, β))2 . (2.44)
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(a) Effect of the α parameter on the Black
implied volatility σB.
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(b) Effect of the α parameter on the nor-
mal implied volatility σN.
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(c) Effect of the ρ parameter on the Black
implied volatility σB.
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(d) Effect of the ρ parameter on the nor-
mal implied volatility σN.
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(e) Effect of the ν parameter on the Black
implied volatility σB.
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(f) Effect of the ν parameter on the nor-
mal implied volatility σN.

Figure 2.2: Effect of the SABR parameters on the implied volatility smile. Here the
parameters are: F0 = 2%, T = 1 year, β = 0.5, α = 0.02, ρ = −0.1, and ν = 0.6.
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Note that β is typically not included in the optimization. It turns out that we can
find the same quality fit for any value of β. Therefore, β is typically chosen by
traders based on their believes about the market or for aesthetic reasons.

To solve the optimization problem in equations (2.43) or (2.44) various methods
exist. In this thesis, we will use the Levenberg-Marquardt algorithm [2, 3], since this
algorithm is available in the standard distribution of Matlab.

2.4.3.1 Shifted SABR Model

When assuming the SABR model dynamics from equation (2.37), the forward rate
cannot become negative. This poses the same problem as with Black’s model. To
solve this, we also add a small quantity to both the forward and the strike. This
leads to the dynamics

dF (t) = α(t)(F (t) + s)βdW1(t), F (0) = F0, (2.45)
dα(t) = να(t)dW2(t), α(0) = α,

d〈W1,W2〉(t) = ρdt,

Modeling a forward rate with the shifted SABR model, allows the forward rate to
be in the interval (−s,∞). So by choosing s positive, we can effectively allow for
negative forward rates.

By a method similar to the one we used in the shifted Black model, we derive a
similar approximation for the normal implied volatility σN. We also show how the
shifted Black implied volatility σBsb can be obtained, using a similar method as in
[27], but instead applied to the shifted SABR model. As far as we know, the results
from Theorem 2.27 and Theorem 2.28 cannot be found in the existing literature.

Theorem 2.27 (Shifted SABR formula). Let F (t) follow the shifted SABR model dy-
namics from equation (2.45). Then the normal implied volatility σN is approximated
by

σN(F0,K, T ;α, ρ, ν, β, s) = IN0 (1 + IN1 T ), (2.46)

where

IN0 = ν(F0 −K)

log
(√1−2ρz+z2+z−ρ

1−ρ
) ,

IN1 = β(β − 2)
24

α2

((F0 + s)(K + s))(1−β) + 1
4

βαρν

((F0 + s)(K + s))(1−β)/2 + 2− 3ρ2

24 ν2,
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z =


ν

α

(F0 + s)1−β − (K + s)1−β

1− β if β < 1,
ν

α
log((F0 + s)/(K + s)) if β = 1.

Proof. First note that Bachelier’s formula, equations (2.33) and (2.35), are indepen-
dent of shift. That is, for every s ∈ R we have

CN(F0,K, T, σN) = CN(F0 + s,K + s, T, σN),
PN(F0,K, T, σN) = PN(F0 + s,K + s, T, σN).

So, if the normal implied volatilities σN are equal, then the option prices are equal,
independent of the shift s. Now, if F (t) follows the shifted SABR model dynamics
from equation (2.45), then F (t) + s follows the dynamics of the SABR model from
equation (2.37). Therefore, we can apply the SABR formula, Theorem 2.26, to F0 +s
and K + s. This proves the result.

Apart from an approximation for the normal implied volatility σN, we derive a new
approximation formula for the shifted Black implied volatility σBsb. This new formula
allows us to compute the σBsb when the SABR model was originally calibrated with
another shift s 6= sb. The ability to use different shifts will be very important in
later parts of this thesis.

Theorem 2.28 (Shifted SABR formula). Let F (t) follow the shifted SABR model
dynamics with shift s from equation (2.45). Then the implied volatility of the shifted
Black model σBsb with shift sb is approximated by

σB
sb(F0,K, T ;α, ρ, ν, β, s) = IB0 (1 + IB1 T ), (2.47)

where

IB0 = ν log((F0 + sb)/(K + sb))

log
(√1−2ρz+z2+z−ρ

1−ρ
) ,

IB1 = 1
24

α2

((F0 + sb)(K + sb))(1−β) + β(β − 2)
24

α2

((F0 + s)(K + s))(1−β)

+ 1
4

βαρν

((F0 + s)(K + s))(1−β)/2 + 2− 3ρ2

24 ν2,

z =


ν

α

(F0 + s)1−β − (K + s)1−β

1− β if β < 1,
ν

α
log((F0 + s)/(K + s)) if β = 1.
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Proof. Note that by setting β = 1 and ν = 0, the dynamics of the shifted SABR
model with shift sb from equation (2.45), become equal to the dynamics of the
shifted Black model from equation (2.29). So, by using Theorem 2.27 with β = 1
and ν = 0, we have an approximation of the normal implied volatility for the shifted
Black model.

lim
ν→0
β→1

σN(F0,K, T ;σBsb , ρ, ν, β, s) = F0 −K
log

(
F0+sb
K+sb

)σBsb

(
1− 1

24(σBsb)2T

)
. (2.48)

We can find the shifted Black implied volatility σBsb for the SABR model by setting
σB

sb = IB0 (1 + IB1 T ) in equation (2.48). Through O(T 2) this yields

IN0

(
1 + IN1 T

)
= F0 −K

log
(
F0+sb
K+sb

)IB0 (1 +
(
IB1 −

1
24(IB0 )2

)
T

)
+O(T 2). (2.49)

Solving for IB0 and IB1 yields

IB0 = log((F0 + sb)/(K + sb))
F0 −K

IN0 , (2.50)

IB1 = IN1 + 1
24(IB0 )2 = IN1 + 1

24
α2

((F0 + sb)(K + sb))1−β ,

where we used a similar approximation as Hagan et al. [27] did in their derivation
of IN1 . They use that for small ν we have

IB0 ≈
α

((F0 + sb)(K + sb))(1−β)/2 .

Plugging IN0 and IN1 from equation (2.46) with shift s into equation (2.50), proves
the result.

Note that Theorem 2.28 an approximation that is most accurate for small maturities.
Therefore, we expect small differences in the option price depending on the shifted
Black implied volatility σBsb that is used to obtain that price, especially for larger
maturities. So, when a different shift sb is used we also expected to see a slightly
different price.

To see this effect we compared option prices obtained with different values for the
shift sb, using a large maturity T = 20 years. As can be seen in Figure 2.3, the
prices obtained depend slightly on the shift parameter that is used. Since the price
difference stays within a few basis points across a wide range of strikes and will be
even less for smaller maturities we conclude that these errors are small enough for
the applications in this thesis.
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Figure 2.3: Prices in basis points when using different values for the shift sb in
Theorem 2.28 with constant SABR parameters. Here the parameters are: F0 = 2%,
s = 0%, T = 20 years, β = 0.5, α = 0.02, ρ = −0.1, and ν = 0.6.

2.5 Bootstrapping Market Data

So far, we have assumed that all forward rates Li(0) and forward swap rates Sn,m(0)
are known. In practice, only spot rates are quoted in the market. In this section,
we discuss a method to compute the forward rates Li(0) and forward swap rates
Sn,m(0) that are consistent with the current spot rates L0(0) and S0,m(0) observed
in the market. The results can be presented in various forms

(a) As a function Ti 7→ P (0, Ti); this is called the discount curve or zero-coupon
curve.

(b) As a function Ti 7→ Li(0), assuming that all tenors Ti+1 − Ti are equal; this is
called the forward curve.

(c) As a function Tn 7→ Sn,m(0), assuming that the swap tenor Tm − Tn stays
equal; this is called the forward swap curve.

The simplest method of doing this involves a method known as bootstrapping. This
method works by incrementally computing zero-coupon bonds in order of increasing
maturity. Once we have all zero-coupon bond prices, we can use Definition 2.5 to
compute the forward rates

Li(0) = 1
τi

(
P (0, Ti)
P (0, Ti+1) − 1

)
, (2.51)

and Definition 2.6 to compute the forward swap rates

Sn,m(0) = P (0, Tn)− P (0, Tm)
An,m(0) . (2.52)
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By definition of the zero-coupon, bond we have that P (0, 0) = 1. Now we can
compute the first zero-coupon bond from the spot rate as

L0(0) = 1
τ0

( 1
P (0, T1) − 1

)
, ⇔ P (0, T1) = 1

1 + τ0L0(0) .

The next zero-coupon bonds can be computed from the spot swap rates. These are
typically quoted for maturities Tm up to 30 years or more. By equation 2.52, the
spot swap rate is given by

S0,m(0) = 1− P (0, Tm)∑m−1
i=0 τiP (0, Ti+1)

.

By rewriting this, we get

1− P (0, Tm) = S0,m(0)
(∑m−2

i=0 τiP (0, Ti+1) + τm−1P (0, Tm)
)
, ⇔

P (0, Tm) = 1− S0,m(0)
∑m−2
i=0 τiP (0, Ti+1)

1 + τm−1S0,m(0) .

This allows us to compute the value of the nth zero-coupon bond based on the nth
swap rate and the previous n − 1 zero-coupon bonds. The value of zero-coupon
bonds P (0, t), with Tn−1 < t < Tn, can be found by interpolation.

In practice, not all swap rates are quoted and the swap rates for some maturities
Tm can be missing. To determine the missing swap rates, an interpolation method
needs to be used. In Figure 2.4, linear interpolation is compared with C2-spline
interpolation [37]. As can be seen in Figure 2.4b, linear interpolation can give a
jagged curve that Filipović referred to as a “sawtooth” shape [36], This indicates
that linear interpolation of the swap rates might be inappropriate to compute the
forward rates in some cases. On the other hand, using spline interpolation gives a
smoother curve, but the resulting forward rates become very sensitive to the data.
In this thesis, we will use the linear interpolation because it is more robust than
the spline based method. Note that both interpolation methods exactly reconstruct
market prices which is often a desirable property.

There are still other possibilities. When the data is questionable, we can allow for
small pricing errors in favor of a more robust estimation method. Some options
include fitting a parametric curve to force the forward rates into an idealized form,
as suggested by Nelson and Siegel [11], and Svensson [13] or non-parametric methods
such as smoothing splines, described in [37]. These methods, however, are beyond
the scope of this thesis.
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(a) Bootstrapped zero-coupon curve.
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(b) Bootstrapped 6m forward curve.
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(c) Bootstrapped forward swap curve with swap tenor of 20y.
Figure 2.4: Bootstrapped discount curve (a), forward curve (b), and forward swap
curve (c) based on Euribor rates and swaps with Euribor as reference rate from
18-06-2015.
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Chapter 3

Risk Measurement

In this chapter, we will show how market risk is measured. This is the risk of loss due
to unforeseen changes in market prices and market rates. Quantifying and accurately
measuring this type of risk is very important, since the amount of capital that needs
be set aside is primarily based on the measured market risk.

We start this chapter by introducing risk measures and the properties they should
satisfy. After that we show how these measures can be computed using the historical
simulation method. We end this chapter with different backtesting methods that
can be used to validate the computed risk measures.

3.1 Risk Measures

When measuring market risk, we look at the monetary risk of a specific portfolio.
That is the risk of a decrease in market value of that portfolio. To this end, we look
at the portfolio’s profits and losses. The profit and loss is the difference between the
portfolio’s value at two different points in time. Typically, the portfolio’s current
value is compared with its value h trading days later, where h is called the risk
horizon.

In order to define the profit and loss, let V (t) be the value of a given portfolio at
time t. The difference between V (t) and V (t + h) is the time t profit and loss. In
practice, t is today, so that t + h is some date in the future and therefore not yet
known. In this case, V (t+ h) has to be estimated and the profit and loss will be a
random variable.

Definition 3.1 (Profit and loss distribution). For a given portfolio, the profit and
loss distribution at time t, with a risk horizon of h trading days, is given by

X = X(t, h) = V (t+ h)− V (t). (3.1)
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As mentioned above, we look at the profit and loss of today, so if today is T0, then
we consider X(T0, h). The risk horizon is commonly set to either 1 trading day or
10 trading days, which equals 2 weeks.

Remark 3.2. If we want to be precise in our definition of the profit and loss
distribution, we should also consider the time value of money. To this end, we should
have discounted the portfolio’s time t+ h value as explained in Section 2.1. To be
completely correct, we should use X(t, h) = P (t, t+h)V (t+h)−V (t) instead, where
P (t, t+ h) is the time t zero-coupon bond with maturity t+ h. However, since h is
typically small, the effect of considering the time value of money is negligible and
not worth the extra complexity. Therefore, we will keep using Definition 3.1 in the
rest of this thesis. 4

3.1.1 Monetary and Coherent Risk Measures

Before we introduce concrete examples of risk measures, we first define the properties
that a risk measure should satisfy. The aim is to quantify the amount of monetary
risk for a given portfolio as an amount of extra capital that should be set aside in
order to make the risk of loss acceptable from the point of view of a supervisory
agency. So, in order to define a monetary risk measure, we let X be the set of profit
and loss distributions of all portfolios at time T0.

Definition 3.3 (Monetary risk measure). A function ρ : X → R is a monetary risk
measure if for all X,Y ∈ X we have

ρ(X) ≥ ρ(Y ) for X ≤ Y a.s., (Monotonicity)

ρ(X +m) = ρ(X)−m for m ∈ R. (Translation invariance)

A portfolio with profit and loss distribution X is called acceptable when ρ(X) ≤ 0.

The financial interpretation of the monotonicity property is that a portfolio that
always has a higher profit should be considered less risky. Translation invariance is
motivated by the interpretation of ρ as a capital requirement. This means that the
portfolio should become acceptable by adding a risk-free amount ρ(X) to the portfolio.
By translation invariance this is guaranteed, since ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0.

Although a monetary risk measure clearly defines a risk measure that can be used
as a capital requirement, it does not capture all aspects we would expect from a
risk measure. For example, diversification of a portfolio should not increase risk. To
this end, Artzner et al. have introduced the concept of coherent risk measures [20],
which was later generalized by Föllmer and Schied [26, 34].
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Definition 3.4 (Coherent risk measure). A monetary risk measure ρ is a coherent
risk measure, if for all X,Y ∈ X we have

ρ(λX + (1− λ)Y ) ≤ λ ρ(X) + (1− λ)ρ(Y ), for 0 ≤ λ ≤ 1, (Convexity)

ρ(αX) = αρ(X), for 0 ≤ α. (Positive homogeneity)

The convexity property directly captures the idea that diversification should decrease
risk. Indeed, the risk of the diversified position λX + (1− λ)Y should be less than
or equal to the weighted average of the individual positions λX and (1− λ)Y . The
financial meaning of positive homogeneity is that the size of the portfolio is directly
proportional to the size of the risk. Especially, the risk of holding no assets should
be zero, i.e. ρ(0) = 0. Also note that positive homogeneity together with convexity
implies the property

ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (Sub-additivity)

This allows for the decentralization of risk measurement. Often a large financial
institution has to manage risks which are divided over many different portfolios. By
setting risk limits on each portfolio, the sub-additive property ensures that the total
risk does not exceed the sum of these limits.

3.1.2 Value at Risk

The first concrete example of a risk measure we give is the value at risk, which is
currently the most widely used risk measure. The main reason is that the Basel
Committee on Banking Supervision made value at risk the preferred risk measure
in their Basel II accord [29]. Because of this, the amount of capital that financial
institutions need to set aside is directly proportional to the value at risk. So, it
has become increasingly important to compute the value at risk as accurately as
possible.

The value at risk is the amount of monetary loss of a given portfolio that is exceeded
only a small amount of the time within a fixed time horizon. In this case, ` is called
the significance level and is set by the Basel Committee to be 1% [29].

To formally define the value at risk, we first introduce quantiles and the quantile
function. A `-quantile of a random variable X is any value x such that P(X ≤ x) = `.
The quantile function is then the infimum among all quantiles of a given level. So
the quantile function of X is given by

QX(`) = inf {x ∈ R |P(X ≤ x) ≥ `} . (3.2)

The value at risk is then the negative value of the smallest quantile of a given profit
and loss distribution at the given significance level `.
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Definition 3.5 (Value at Risk). For a given significance level ` ∈ (0, 1), or confidence
level 1− `, and a risk horizon h, the value at risk of a portfolio with today’s profit
and loss distribution X = X(T0, h) is given by

VaRX(`) = −QX(`) = − inf {x ∈ R |P(X ≤ x) ≥ `} , (3.3)

where P is the real-world probability measure.

It can be easily checked that the value at risk is a monetary risk measure that
also satisfies the positive homogeneity property. Also, when the profit and loss
distribution is normal, or more general when it has an elliptical distribution, it can
be shown that the value at risk is sub-additive [32]. However, in general the value
at risk is not sub-additive and hence it is not a coherent risk measure, as shown by
the following example.

Example 3.6. Consider two instruments that each have a probability of 4% to
incur a loss of € 1000 independently of each other, otherwise they make a profit of
€ 50. When we compute the 5% value at risk for each product separately, we see
that it is minus € 50. So, when considered separately both products will be deemed
acceptable. However, when we consider both products together, the probability that
at least one will incur a loss is 1 − (1 − 0.04)2 ≈ 7.8%. So, in this case the 5%
value at risk will be at least € 950. Therefore, the value at risk of both products
combined is larger than zero and hence not acceptable. Hence, the value at risk is
not a sub-additive risk measure. 4

Note that the example above relies on large jumps in the profit and loss distribution,
which might not be realistic for a large portfolio. However, there are various other
examples showing that the value at risk is not sub-additive even when the profit and
loss distribution is continuous [32, 31, 33].

What this example shows, is that the value at risk ignores the severity of the losses
below the significance level and therefore may fail to stimulate diversification. The
value at risk also does not account for the severity of the losses. This is troubling
from a regulatory point of view as the losses beyond the significance level are typically
those where the regulator has to step in.

3.1.3 Expected Shortfall

Due to the shortcomings of value at risk the Basel Committee on Banking Supervision
is planning to stop using value at risk for capital requirements. Under the Basel III
regulations the capital requirements will be based on the expected shortfall measure
with a significance level ` = 2.5% [48, 39].
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The expected shortfall is defined as the average of all value at risk up to a certain
significance level. This leads to the following definition.

Definition 3.7 (Expected shortfall). For a given significance level ` ∈ (0, 1), or
confidence level 1− `, and a risk horizon h, the expected shortfall of a portfolio with
today’s profit and loss distribution X = X(T0, h) is given by

ESX(`) = 1
`

∫ `

0
VaRX(u) du. (3.4)

Note that the expected shortfall is continuous in its significance level, i.e. the function
` 7→ ESX(`) is continuous. Because there are no jumps in the expected shortfall, it
is less sensitive to the choice of significance level than the value at risk.

When the profit and loss distribution X is continuous, we have a more intuitive
representation for the expected shortfall as shown in Lemma 3.8. This shows that
the expected shortfall can be written as the average loss, given that the loss exceeds
the value at risk.

Lemma 3.8. Let X be a continuous profit and loss distribution of some portfolio,
then the expected shortfall can also be written as

ESX(`) = −E [X |X ≤ −VaRX(`)] , (3.5)

where E is the expectation under the real-world probability measure.

Proof. Since X has a continuous distribution we have VaRX(`) = −F−1(`), where
F−1 denotes the inverse cumulative distribution function of X. Then by substituting
u = F (x) we find∫ `

0
VaRX(u) du = −

∫ `

0
F−1(u) du

= −
∫ F−1(`)

−∞
x dF (x)

= −E
[
X
∣∣∣X ≤ F−1(`)

]
P(X ≤ F−1(`))

= −E
[
X
∣∣∣X ≤ −VaRX(`)

]
P(X ≤ −VaRX(`)).

Also, since X has a continuous distribution, we have that P(X ≤ −VaRX(`)) = `

and the result follows.

The representation from Lemma 3.8 shows that the expected shortfall is based on
the tail of the profit and loss distribution X, in contrast to the value at risk, which is
based on a single point of the profit and loss distribution. So, the expected shortfall
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also takes the severity of the losses beyond the value at risk into account. This
property is especially important for regulators who have to step in when the losses
become too severe for an institution to handle themselves.

Similar to value at risk, it is also easy to see that expected shortfall is a monetary
risk measure that satisfies the positive homogeneity property. Moreover, Acerbi and
Tasche have shown that the expected shortfall does also satisfy the sub-additivity
property [24, 23]. Hence, the expected shortfall is a coherent risk measure, as it
possesses all the properties we expect from a risk measure.

3.2 Estimating Profit and Loss

In order to compute the value at risk or expected shortfall, we need to estimate
today’s profit and loss distribution X = X(T0, h), where today is denoted by T0. In
this thesis, we will use the historical simulation method, first introduced by Hendricks
[14] and currently the most used method to estimate profit and loss distributions.
Perignon and Smith showed that approximately 3 out of every 4 commercial banks
use historical simulation [38].

The main advantage of historical simulation is that it does not make any assumptions
on the shape profit and loss distribution and that it is relatively easy to implement.
However, since a historical simulation is based on historical data, we do make the
implicit assumption that the historical market changes are representative for today.
That is, we assume normal market conditions to allow the use of past observations
to determine likely future scenarios.

3.2.1 Historical Simulation

A historical simulation consists of generating n possible future market scenarios,
based on historical observations. In each of these scenarios, we determine the port-
folio’s value based on the market values in that scenario. Then, by subtracting the
portfolio’s current value, we find a set of possible profits and losses. These profits
and losses are then combined to form an empirical distribution from which the value
at risk or expected shortfall can be computed.

To formally define historical simulation, we first need to determine a set of market
prices and market rates, which determine the value of our portfolio. All market
prices and market rates that are relevant to the portfolio’s value will be called risk
factors. The value of all risk factors at time t will be stored in a d dimensional vector
R ∈ Rd.

We also need a calibration window, this is the historical period that will be used to
generate the values of each risk factor. To this end let ti, with i = 1, . . . , n+m, be
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a set of daily historical observation times such that ti ≤ T0 and ti − ti−m = h for all
i. With historical simulation we require R(T0) and R(ti), for i = 1, . . . , n+m, to be
known.

We then generate n different future scenarios by applying historically observed shocks
to the current risk factor values. Let R̂i(T0 + h) denote the risk factor values in the
ith scenario. Then R̂i(T0 + h) can be computed by

R̂i(T0 + h) = R(T0) +R(ti+m)−R(ti)︸ ︷︷ ︸
historical shock

, for all i = 1, . . . , n. (3.6)

So, we assume that shocks which occurred in the past, will be similar to the shocks
happening today. Example 3.9 shows how a scenario is generated by applying shocks
to risk factors.

Example 3.9. Suppose that we only have one single risk factor, so R(t) is a single
number. Figure 3.1 gives an example of a hypothetical risk factor with n = 10
different daily observations. In this example, we want to estimate the profit and
loss distribution with risk horizon h = 1 day, so m = 1. In this example, we have
R(T0) = 2 as the current value of the risk factor. As can be seen in Figure 3.1, the
first historical values of this risk factor are R(t0) = 5, R(t1) = 7, R(t2) = 6, and
R(t3) = 3. Therefore, the first three scenarios will be

R1(T0 + h) = 2 + 7− 5 = 4,
R2(T0 + h) = 2 + 6− 7 = 1,
R3(T0 + h) = 2 + 3− 6 = −1. 4

t0 t1 t2 t3 . . . T0
0

2

4

6

8

Historical date ti

R
isk

fa
ct
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Figure 3.1: Example of how to calculate shocks from risk factor values. The shocks
are represented by the gray arrows. In this example the risk horizon is 1 day and
the first three shocks are: +2, −1 and −3.
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As we will see later, some risk factors should always be positive even after applying
historical shocks. This can be accomplished using so called relative shocks. To apply
a relative shock, we use a log-transformation before applying the historical shock.
Then the jth risk factor R̂ij(T0 + h) can be computed by

log
(
R̂ij(T0 + h)

)
= log (Rj(T0)) + log (Rj(ti+m))− log (Rj(ti)) , (3.7)

⇔

R̂ij(T0 + h) = Rj(T0) ·
(

1 + Rj(ti+m)−Rj(ti)
Rj(ti)

)
, for all i = 1, . . . , n.

Once we have created all scenarios, we need to determine the portfolio’s value in
each of those scenarios. We will use Vi(T0 + h) to denote the value of the portfolio,
given that the market will be equal to that of the ith scenario, i.e. we assume that
the market is given by the values in R̂i(T0 + h). Then the profit and loss in each
scenario is given by

Xi = Vi(T0 + h)− V (T0), for all i = 1, . . . , n. (3.8)

The Xi can be interpreted as samples from the actual (unknown) profit and loss
distribution X. These samples can then be used to create an empirical distribution
or to estimate the value at risk and expected shortfall directly.

Generating more samples will theoretically increase the accuracy of the estimation.
However, in order to simulate more samples we need a larger calibration window
and hence more historical data, which might not be available. Moreover, historical
data from long ago might not be representative for today due to possible changes
in the market or in regulation. Therefore, we need to be prudent in the choice of
calibration window. In this thesis, we will use a calibration window of one year of
daily observations, as prescribed by the Basel II accord [29].

3.2.2 Value at Risk Estimation

Given n samples (X1, . . . , Xn) of the profit and loss distribution X, we want to
estimate the value at risk from Definition 3.5. To this end, let X(1) ≤ . . . ≤ X(n) be
the order statistics of this sample, so X(i) is the ith smallest sample from the set
(X1, . . . , Xn). Also let bxc be the integer part of x, that is

bxc = max {n ∈ Z |n ≤ x} .

A natural estimator for the value at risk is then the bn`cth order statistic, where n
is the number of samples and ` is the significance level. So, the value at risk, based
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on n samples, can be estimated by

VaR(`) = −X(bn`c). (3.9)

When the profit and loss distribution is not continuous, the estimator from equa-
tion (3.9) is not consistent [4]. Nevertheless, in practical applications the profit
and loss distribution will only have small discontinuities, so the estimator from
equation (3.9) is a good approximation to the real value at risk.

3.2.3 Expected Shortfall Estimation

In order to estimate the expected shortfall, we use the representation from Lemma 3.8.
Therefore, the expected shortfall, based on n samples, can be estimated by

ES(`) = − 1
bn`c

bn`c∑
i=1

X(i). (3.10)

Although we need the profit and loss distribution to be continuous for Lemma 3.8
to hold, it was shown by Acerbi and Tasche that the estimator from equation (3.10)
is a consistent even when the profit and loss distribution is not continuous [24].

3.3 Backtesting

Backtesting is the process of testing the correctness of an estimation procedure. In
our case, this means that we compare the actual profits or losses with the estimated
value at risk or expected shortfall. We can then test whether a certain estimation
method is likely to be correct based on statistical analysis. In this section, we present
several different backtesting methods. We start by describing how to backtest the
value at risk, after which we continue by extending those approaches, so that they
can also be used to backtest the expected shortfall.

3.3.1 Backtesting Value at Risk

Backtests for value at risk are defined by comparing the realized profit and loss
against the estimated value a risk. This comparison is typically done using the value
at risk failure indicator that equals 1 when the realized loss exceeds the value at risk
estimate and 0 otherwise. So, the value at risk failure indicator is defined as follows.
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Definition 3.10 (VaR Failure indicator). Let xi, with i = 1, . . . , N , be the realized
profit or loss at day i and let VaRi(`) be the forecasted value at risk for that day.
Then, the value at risk failure indicator is given by

H (i)
var(`) = 1{−xi≥VaRi(`)}, (3.11)

where 1 is used to denote the indicator function.

As shown by Christoffersen, determining the accuracy of a value at risk method can
now be reduced to the problem of checking if the failure indicators H (i)

var(`) satisfy
the following two properties [19, 30].

• Unconditional coverage property. The probability of exceeding the value at risk
should be equal to the significance level `. Therefore, a value at risk model can be
deemed accurate if P(H (i)

var(`) = 1) = `. If the probability of exceeding the value
at risk is higher than `, the value at risk model is underestimating the portfolio’s
actual risk. The alternative is that this probability is lower than `, which indicates
that the value at risk is too conservative, resulting in an unnecessarily high value
at risk.

• Independence property. The unconditional coverage property places a restriction
on the average number of value at risk violations. For a value at risk model
to be correct, we also need the failure indicators to be spaced independently
throughout time. Specifically, there should be no correlation between two failure
indicators H (i)

var(`) and H (j)
var(`), when i 6= j. Suppose, for example, that value at

risk violations always occur in pairs, then if the value at risk was exceeded today,
we know that we will exceed it again tomorrow with certainty. Hence, in this case
the value at risk does not accurately reflect the risk of the portfolio. In general, a
clustering of value at risk violations indicates that the independence property is
not satisfied because the value at risk model does not adjust to changing market
conditional quickly enough, making successive value at risk violations more likely.

Although a good value at risk model should satisfy both the unconditional coverage
property and the independence property, the unconditional coverage property is
considered more important. This is confirmed by the Basel Committee on Banking
Supervision by requiring only to test the unconditional coverage property [29]. Nev-
ertheless, in this thesis we will preform backtests that check both of these properties.

3.3.1.1 Unconditional Coverage

An unconditional coverage test is used to check if the total amount of times the value
at risk has been exceeded is reasonable. When the value at risk is exceeded too often,
it might indicate that we are systematically underestimating risk. On the other
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hand, when the number of value at risk violations is too low, we are overestimating
the risk. To this end, statistical tests can provided valuable insight in the quality of
the estimation method.

When the number of backtesting days N is large enough, we can use a simple Z-test
to check the validity of the value at risk estimate [50, 49].

Theorem 3.11. If the value at risk model is correct, the failure indicator H (i)
var(`)

from Definition 3.10, is asymptotically normal with mean ` and variance `(1 − `)
and therefore admits a Z-test, with Z-score given by

Z =
√
N

(
1
N

∑N
i=1H

(i)
var(`)

)
− `√

`(1− `) . (3.12)

Proof. Under the assumption that the value at risk model is correct, all failure
indicators H (i)

var(`) are Bernoulli random variables with probability `. Hence, each
failure indicator has mean ` and variance `(1 − `). It then follows by the central
limit theorem that

Z =
√
N

(
1
N

∑N
i=1H

(i)
var(`)

)
− `√

`(1− `)
d−−−−→

N→∞
N (0, 1).

That is, Z converges in distribution to a standard normal distribution. So, for a
large enough sample size N , we can use a Z-test.

The Z-score from equation (3.12) can now be used to define one-sided or two-sided
Z-test through the standard normal cumulative distribution Φ. In case we only worry
about the underestimation of risk, a one-sided test can be defined by p = Φ(−Z).
When we are also concerned about overestimation, we can use a two-sided test as
p = 2 Φ(−|Z|). When these p-values become too small, it is unlikely that the value
at risk model is correct and we can reject the validity of that model.

3.3.1.2 Independence

The unconditional coverage test only checks if the total amount of value at risk
violations is close to the expected value. However, we also want to check if the
violations are independent throughout time. Exceeding the value at risk multiple
consecutive days may be an indicator that our estimation procedure is inadequate.
Hence, when we see too many value at risk violations clustered, this could be the
basis of rejecting a certain model.

To check whether the value at risk exceedances are not clustered throughout time, we
will describe a method based on the backtest by Du and Escanciano [50]. This can be
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done by checking if there is no serial correlation in the value at risk failure indicator
process H (i)

var(`). Using the Ljung-Box statistic, we can test for this kind a correlation
up to a certain number of lags m [8]. That is, we test if there is any correlation
between the failure indicator H (i)

var(`) at day i and H (i−k)
var(`), for k = 1, . . . ,m.

Definition 3.12 (Ljung-Box statistic). Let H (i)
var(`) be the value at risk failure

indicator, for i = 1, . . . , N , and let m be a number of lags. Then, the Ljung-Box test
statistic is given by

Q = N(N + 2)
m∑
k=1

ρ2
k

N − k
, (3.13)

where

ρk =
∑N
i=k+1

(
H (i)

var(`)− `
)(
H (i−k)

var(`)− `
)

∑N
i=1

(
H (i)

var(`)− `
)2 .

Under the hypothesis that all failure indicators are independent, i.e. that there is
no serial correlation, the test statistic Q, from equation (3.13) follows a chi-squared
distribution with m degrees of freedom χ2

m [5, 8]. Therefore, we can reject a value at
risk model when p = 1− χ2

m(Q) becomes too small. However, the results from this
test need to be interpreted with care since the Ljung-Box test has a low power when
used on highly skewed binary data, as is typically the case when backtesting value
at risk [25]. Moreover, the power of the Ljung-Box tests decreases when the number
of lags m becomes too high. Therefore, we will test only for serial correlation, so
we set the number of lags to m = 1. In this sense, the backtest from this section is
similar to Christoffersen backtest [19], but as we will show in the next section, the
test in this section is also extendable to expected shortfall.

Lastly, this independence test can be combined with a two-sided unconditional cover-
age test by using the sum of both statistics [7]. The Z-score from equation (3.12) is
normally distributed, so that Z2 has a chi-squared distribution with one degree of free-
dom χ2

1. This can be combined with the Ljung-Box statistic Q from equation (3.13),
which also has a chi-squared distribution. When we test for only serial correlation,
m = 1, the combined statistic Z2 +Q has a chi-squared distribution with 2 degrees
of freedom. Therefore, a combined test could be defined using p = 1− χ2

2(Z2 +Q).

3.3.2 Backtesting Expected Shortfall

Backtesting expected shortfall is slightly more intricate than backtesting value at risk.
However, the general idea is the same. We start by defining an expected shortfall
failure indicator, and then we check if the expected shortfall failure indicators satisfy
the unconditional coverage property and the independence property. In this section
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we follow Costanzino and Curran and define the expected shortfall failure indicator
[49].

Definition 3.13 (ES Failure indicator). Let xi, with i = 1, . . . , N , be the realized
profit or loss at day i. Then, the expected shortfall failure indicator H (i)

es(`) is given
by

H (i)
es(`) = 1

`

∫ `

0
1{−xi≥VaRi(u)} du, (3.14)

where 1 is used to denote the indicator function.

Note that we cannot determine the expected shortfall failure indicator H (i)
es(`) solely

from the corresponding expected shortfall ESi(`). Rather we need information from
the profit and loss distribution in order to determine H (i)

es(`). When the historical sim-
ulation method from Section 3.2.1 is used to estimate the profit and loss distribution,
we can compute the failure indicator with

H (i)
es(`) =

bn`c∑
i=1

1{xi≤X(i)}

bn`c
, (3.15)

where n is the size of the calibration window used in the historical simulation.

Before we define the backtesting statistics for the expected shortfall, it is convenient
to know the first two moments of the expected shortfall failure indicators H (i)

es(`).
Therefore, we will derive these before we continue to define the expected shortfall
backtests.

Lemma 3.14. The first two moments of the expected shortfall indicator H (i)
es(`) are

given by
E[H (i)

es(`)] = `/2, and E[(H (i)
es(`))2] = `/3. (3.16)

Proof. First consider the mean of the expected shortfall failure indicator. Using
Fubini’s theorem, allows us to take the expectation inside the integral. The result
then follows from the fact that the value at risk failure indicator is a Bernoulli
random variable.

E[H (i)
es(`)] = E

[
1
`

∫ `

0
1{−xi≥VaRi(u)} du

]

= 1
`

∫ `

0
E[1{−xi≥VaRi(u)}] du

= 1
`

∫ `

0
u du = `

2 .
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Similarly, the second moment can be computed as follows.

E[(H (i)
es(`))2] = E

(1
`

∫ `

0
1{−xi≥VaRi(u)} du

)2


= 1
`2

E
[(∫ `

0
1{−xi≥VaRi(u)} du

)(∫ `

0
1{−xi≥VaRi(v)} dv

)]

= 2
`2

E
[∫ `

0

∫ v

0
1{−xi≥VaRi(u)}1{−xi≥VaRi(v)} du dv

]

= 2
`2

∫ `

0

∫ v

0
E[1{−xi≥VaRi(u)}1{−xi≥VaRi(v)}] du dv

= 2
`2

∫ `

0

∫ v

0
u du dv = 2

`2
· `

3

6 = `

3 .

3.3.2.1 Unconditional Coverage

The unconditional coverage test for expected shortfall is very similar to unconditional
coverage test for value at risk. Hence, when the number of backtesting days N is
large enough we can use a Z-test in order to check the correctness of a given expected
shortfall model.

Theorem 3.15. If the expected shortfall model is correct, the failure rate H (i)
es(`) from

Definition 3.13, is asymptotically normal with mean `/2 and variance `(4− 3`)/12,
and therefore, admits a Z-test, with Z-score given by

Z =
√
N

(
1
N

∑N
i=1H

(i)
es(`)

)
− `/2√

`(4− 3`)/12 . (3.17)

Proof. Under the assumption that the expected shortfall model is correct, it follows
from Lemma 3.14 that all failure indicators H (i)

es(`) have mean E[H (i)
es(`)] = `/2 and

variance E[(H (i)
es(`))2]− E[H (i)

es(`)]2 = (`/3)− (`/2)2 = `(4− 3`)/12. It then follows by
the central limit theorem that

√
N

(
1
N

∑N
i=1H

(i)
es(`)

)
− `/2√

`(4− 3`)/12
d−−−−→

N→∞
N (0, 1).

Therefore, Z converges in distribution to a standard normal distribution. So, when
the sample size N is large enough, we can use a standard Z-test.

Similar to the unconditional coverage test for value at risk, we can use to Z-score
from equation (3.17) to define either a one-sided or two-sided Z-test though the
p-value p = Φ(−Z) or p = 2 Φ(−|Z|), respectively.
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3.3.2.2 Independence

We can also extend the value at risk independence test from Section 3.3.1.2 in order
to test an expected shortfall model. The Ljung-Box statistic that can be used to
test an expected shortfall model is then defined as follows.

Definition 3.16 (Ljung-Box statistic). Let H (i)
es(`) be the expected shortfall failure

indicator, for i = 1, . . . , N , and let m be a number of lags. Then, the Ljung-Box test
statistic is given by

Q = N(N + 2)
m∑
k=1

ρ2
k

N − k
, (3.18)

where

ρk =
∑N
i=k+1

(
H (i)

es(`)− `/2
)(
H (i−k)

es(`) − `/2
)

∑N
i=1

(
H (i)

es(`)− `/2
)2 .

As in the value at risk independence test, when the expected shortfall failure indi-
cators are indeed independent then the statistic Q, from equation (3.18), follows a
chi-squared distribution with m degrees of freedom. Therefore, when p = 1− χ2

m(Q)
is too small, we can reject the hypothesis that the failure indicators are independent
and in extension reject the expected shortfall model. Although the Ljung-Box test
is better suited to test expected shortfall since the failure indicators are continuous
instead of binary, the power of this test is still relatively low, especially when used
on a low significance level such as ` = 2.5%, as is typical when backtesting expected
shortfall. Also, the power decreases when the number of lags is chosen too high.
Therefore, when will also test for series correlation only and set the number of lags
to m = 1.

Similar to the value at risk backtest, we can also define a combined test for inde-
pendence and unconditional coverage of the expected shortfall. When m = 1, the
combined statistic Z2 +Q has a chi-squared distribution with 2 degrees of freedom
χ2

2, which allows us to reject an expected shortfall model when p = 1− χ2
2(Z2 +Q)

becomes sufficiently small.
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Chapter 4

Risk Measurement for Interest Rate
Options

When estimating the profit and loss distribution of a portfolio consisting of interest
rate options, the relevant risk factors are the interest rates and implied volatilities.
Hence, in a historical simulation framework the changes in both of those risk factors
within the chosen risk horizon are used for simulating possible outcomes of the
position. Once we have determined the profit and loss distribution, we can estimate
the value at risk or expected shortfall.

It is up to the risk manager to determine the specific choice of risk factors that are
used in the historical simulation. In this chapter, we present different combinations
of risk factors that can be used for interest rate options. We first present the risk
factors we will use for the interest rates. After that, we will present different methods
of applying shocks to the implied volatilities.

4.1 Interest Rate Shocks

As explained in Section 2.4, the price of interest rate options is based on either the
forward Libor or the forward swap rate. Therefore, it seems natural to use these
forward rates as risk factors in the historical simulation. However, this can lead
to inconsistency within the generated scenarios. Consider the forward swap rates
S1,2(0), S2,3(0), and S1,3(0). As explained in Section 2.5, we can also compute the
value of S1,3(0) from S1,2(0) and S2,3(0) by the bootstrapping method. However,
applying historical shocks to S1,3(0) will not necessarily result in the same scenarios
as applying historical shocks to S1,2(0) and S2,3(0) and using the bootstrapping
method to determine S1,3(0). So if we applied shocks to S1,2(0), S2,3(0), and S1,3(0)
we would have two different values for S1,3(0). Hence, applying shocks to the forward
interest rates can result in inconsistent scenarios.
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Therefore, we do not use the forward rates as risk factors. Rather we will use the
spot Libor and spot swap rates at different tenors as risk factors. Then in each
scenario, we will use the bootstrapping method from Section 2.5 to determine the
relevant forward rates, where we will use linear interpolation when we don’t have
the spot interest rate of a certain tenor. The specific set of tenors that we use will
depend on the portfolio. Therefore, we will specify the tenors that are used in every
experiment.

4.2 Implied Volatility Shocks

While determining the risk factors for interest rates is quite straightforward, but the
risk factor choice for the implied volatilities is more intricate. As we have seen in
Section 2.4.3, we typically do not have a single implied volatility. Rather, we need a
different implied volatility for each strike in order to correctly recover market prices.
This relation between strike and implied volatility is often referred to as the volatility
smile.

Generally, the level of the volatility smile is based on the implied volatility of the
at-the-money strike and provides a handle on fluctuations of option prices on a
large scale. However, when the shape of the volatility smile changes, the change in
implied volatility of an away-from-the-money option can be lower or higher than the
corresponding change at-the-money. Therefore, a historical simulation method that
only considers changes in the level of the volatility smile can generate either too
optimistic or too pessimistic forecasts, especially for options whose strike is far from
the at-the-money strike. On the other hand, the level of the volatility smile accounts
for most of the variation which might be enough to determine accurate forecasts.

Furthermore, it is not clear which implied volatility we should use as risk factors.
We could use either the normal implied volatility from Bachelier’s model or the
Black implied volatility from Black’s model. Yet another possibility is to use the
parameters of the SABR model as risk factors. However, due to the negative interest
rates currently observable in the European interest rate market, we cannot use the
Black implied volatility or the SABR parameters directly. Instead, we need to use
the shifted Black implied volatility or the parameters of the shifted SABR model
in order to handle negative interest rates. Which of these approaches will give the
most accurate forecasts of the profit and loss distribution, will be determined in the
next chapter by comparing their results on several test portfolios.

In this section, we first describe how the Black’s implied volatility can be used as
risk factors in a historical simulation. Then, we adapt this method and show how
we can achieve a similar result using the normal implied volatility from Bachelier’s
model. Lastly, we also show how the parameters of the SABR model can serve as
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risk factors. For each of these approaches, we describe a method where only the
level of the volatility smile is allowed to vary and a method were we model changes
in both the level and the shape of the volatility smile.

4.2.1 Using Black’s Model

In this section, we present two methods of using the implied volatility from Black’s
model as risk factors to model changes in both level and shape of the volatility smile.
The first method we describe was proposed by Malz [16, 22]. Secondly, we propose
a new method that can also be used to model the changes in level and shape of
the volatility smile. Using a small approximation, we are able to derive closed from
formula for the risk factors, which makes our method much faster than the method
of Malz.

4.2.1.1 Malz’s Method

Malz proposed a method to model both changes in level and shape of the volatility
smile by applying historical shocks to implied volatilities at different strikes [16, 22].
In this thesis, we will slightly adapt Malz’s method by using the shifted Black implied
volatility σBsb , enabling that this method can also be applied when interest rates are
negative. We will apply shocks to the shifted Black implied volatilities σBsb , where
the shift s has to be fixed throughout the historical simulation.

The main drawback of Malz’s method is that it is unclear which strikes should be
used. We could use three fixed strikes during the whole historical simulation or
we could use three strikes relative to the prevailing forward rate. In this section,
we describe the latter option and will use relative strikes. To define these relative
strikes, we will use the shifted log-moneyness from Definition 2.21. We will then use
the strikes that correspond to the moneyness values M− = −0.25, Matm = 0, and
M+ = 0.25. We will use the implied volatilities at the strikes

K = (F0 + sb) exp (M)− sb, for M = M−, Matm, M+, (4.1)

as risk factors in the historical simulation. Note thatMatm corresponds to the at-the-
money strike K = F0 and that K− < F0 < K+. Assuming that we have historical
data that contains the SABR parameters each day, we can simply use Theorem 2.28
to compute the implied volatilities needed in this method.

From a historical simulation perspective, we will use the shifted Black implied
volatility at the strikes corresponding to M−, Matm, and M+ as risk factors. To
ensure that these implied volatilities remain positive in every scenario, we use relative
shocks as in equation (3.7).
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To price a given portfolio in each scenario, we typically need implied volatilities for
strikes that do not coincide with M−, Matm, and M+. In order to determine the
implied volatility at all strikes, we can calibrate a SABRmodel using the three implied
volatilities in the scenario. We can then use the SABR formula from Theorem 2.28
to compute the implied volatilities for the strikes we need. However, this means
that we have to run a numerical calibration algorithm in every scenario for every
interest rate option in our portfolio. For large portfolios, this can quickly become
unmanageable and therefore makes this method less suitable in large scale historical
simulation.

When the SABR model is calibrated in a scenario, it does not matter which values
we choose for β and s. This can be seen in Figure 4.1, where we calibrated the
shifted SABR model to three implied volatilities using different β and s.
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(a) Volatility smiles for maturity T = 1.
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(b) Volatility smiles for maturity T = 20.
Figure 4.1: Calibration of the SABR model with different values β and s, using
three shifted Black implied volatilities σBsb , with sb = 0, at M−, Matm, and M+,
indicated by the black circles. The forward rate is F0 = 2%.

4.2.1.2 Level, Slope, and Curvature Method

Instead of using the implied volatilities at three strikes, the idea is to use the at-the-
money shifted Black implied volatility, slope and curvature to capture the shape of
the volatility smile. We can obtain the slope and curvature by differentiating the
SABR formula from Theorem 2.28 once and twice, respectively. However, this would
lead to a system of trivariate polynomials of degree 3 and 4. To invert such a system,
we would have to resort to numerical methods which has the same drawback as
Malz’s method, in that it is too slow to be used in a large scale historical simulation.
Instead, we can use an approximate version of Theorem 2.28 that still captures the
shape of the volatility smile around the at-the-money strike accurately.
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The approximation we use in this thesis is similar to the one used by Le Floc’h and
Kennedy [46] and is obtained by setting the maturity T = 0. This is generally a
good approximation, since the contribution of the maturity term is typically small
and can therefore be approximated by zero. This leads to a simplified expression for
the shifted Black implied volatility

σB
sb(F0,K, T ;α, ρ, ν, β, s) = ν log((F0 + sb)/(K + sb))

log
(√1−2ρz+z2+z−ρ

1−ρ
) , (4.2)

where

z =


ν

α

(F0 + s)1−β − (K + s)1−β

1− β if β < 1,
ν

α
log((F0 + s)/(K + s)) if β = 1.

From equation (4.2), we can easily obtain the level lB, slope sB, and curvature
cB. Note that we differentiate with respect to the shifted log-moneyness from
Definition 2.21 to capture the level, slope, and curvature relative to the forward rate.
This gives

lB = lim
K→F0

σB
sb = α

(F0 + s)β

F0 + sb
, (4.3)

sB = lim
K→F0

∂σB
sb

∂M
= 1

2

(
lB
(
β
F0 + sb
F0 + s

− 1
)

+ νρ

)
,

cB = lim
K→F0

∂2σB
sb

∂M2 = 1
6

(
lB
(
β (β − 2)

(
F0 + sb
F0 + s

)2
+ 1

)
+ 2− 3ρ2

lB
ν2
)
,

where M = M(F0,K) = log((K + sb)/(F0 + sb)) is the shifted log-moneyness from
Definition 2.21.

This system of equations (4.3) can be solved analytically to find values α, ρ, and ν
that correspond to a certain level lB, slope sB, and curvature cB. With s = sb we
find

α = lB(F0 + sb)1−β, (4.4)

ν =
√(

(β − 1)lB − 3sB
)2

+ 3
(
lBcB − s2

B
)
,

ρ = 2sB + (1− β)lB
ν

.

When using equation (4.4), it could happen that ν2 < 0, which is clearly invalid. In
this case, we follow Le Floc’h and Kennedy [46] and force ρ ∈ {−1, 1}, depending on
the sign of 2sB + (1− β)lB. That is, we set ρ = sgn (2sB + (1− β)lB). The value of
ν is then recomputed using ν = (2sB + (1− β)lB) /ρ.
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The idea is to use the level lB, slope sB, and curvature cB from equation (4.3) as
risk factors in a historical simulation. So for each day in the calibration window,
we compute the values of lB, sB, and cB using the SABR parameters from that
day using a predetermined shift sb. Next, we apply historical shocks to obtain the
values of lB, sB, and cB in each scenario. The complete volatility smile can then
be recovered using equation (4.4) with s = sb and any β ∈ [0, 1]. Because the level
lB is the implied volatility for the at-the-money strike and as such should always
be positive we will use relative shocks the ensure that the level lB remains positive
in each scenario. For the slope sB and curvature cB we don’t have to use relative
shocks since both are allowed to become negative.

Note that the level lB, slope sB, and curvature cB always have approximately the
same value independent of the β and s that were used to calibrated the SABR model,
but they still depend on the Black implied volatility shift sb. So the choice of sb will
affect the value of the risk factors lB, sB, and cB, which in turn will have an impact
on the historical simulation. In Section 5.3.1 of the next chapter, we will investigate
the effect of using different values for the shift sb and determine which shift gives
the most accurate results.

To show that the volatility smile obtained from a given level lB, slope sB, and
curvature cB are indeed independent of the chosen values for β and s, we use the
method in this section to obtain SABR parameters with different values of β and
s. In Figure 4.2, we show the resulting volatility smiles, where the parameters from
set 2, 3, and 4 are obtained by recalibrating them from the parameters of set 1 in
Table 4.1. As expected, this method yields more accurate results for the smaller
maturity since the approximation from equation (4.2) is better when the maturity
is small. Nonetheless, even for the large maturity we find that the results remain
adequate.

Table 4.1: Analytic recalibration of the shifted Black implied volatility smile.
set β s α ρ ν

1 0.5 0.0% 0.0200 −0.1000 0.6000
2 0.8 0.0% 0.0647 −0.1678 0.6103
3 0.5 1.0% 0.0163 −0.0614 0.5937
4 0.8 1.0% 0.0468 −0.1082 0.5980

Effect of using different β and s when recovering SABR parameters α, ρ, and ν from the
level lB, slope sB, and curvature cB. The parameters from set 2, 3, and 4 are obtained by
recalibrating them from the parameters of set 1 with a forward rate F0 = 2%, using the
method described in this section.
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(a) Volatility smiles for maturity T = 1.
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(b) Volatility smiles for maturity T = 20.
Figure 4.2: Effect of using different β and s when recovering SABR parameters α,
ρ, and ν from the level lB, slope sB, and curvature cB. The resulting shifted Black
implied volatilities σBsb , with sb = 0, are shown for different maturities using the
parameters in Table 4.1

Instead of modeling changes in both the level and shape of the volatility smile, we
can alternatively model only the changes in the level of the volatility smile. This can
be accomplished using only the level lB as a risk factor. Then, in each scenario we
can use the today values of sB and cB in order to recover the SABR parameters α, ρ,
and ν using equation (4.4). Since most of the variation is typically accounted for by
vertical movements of the volatility smile, using only the lB could be a reasonable
approximation.

4.2.2 Using Bachelier’s Model

In the previous section, we showed how the shifted Black implied volatility σBsb can
be used as risk factors in a historical simulation. Another possibility is to use the
normal implied volatility from Bachelier’s model. In this section, we will show how
Malz’s method can be used with normal implied volatilities. After that, we also show
how to determine the level, slope, and curvature of the normal implied volatility
smile.

4.2.2.1 Malz’s Method

Malz’s method can also be applied to the normal implied volatility. However, when
using normal implied volatility, it makes sense to also use the simple moneyness
from Definition 2.24 to define the strikes at which we applied the historical shocks.
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Because of this, we will also need to revisit the moneyness values that are used. Here,
we will use the values M− = −0.0025, Matm = 0, and M+ = 0.0025, so we use the
strikes given by

K = M + F0, for M = M−, Matm, M+. (4.5)

So, in this case we will use the normal implied volatilities corresponding to the strikes
K−, F0 = Katm, and K+ as risk factors in the historical simulation. Assuming that
we have historical data containing the SABR parameters each day, we can use
Theorem 2.27 to compute the implied volatilities at these strikes.

With this method, the risk factors are three implied volatilities, which should always
be positive. To ensure this, we apply a log-transformation as with did in the previous
sections. Then, in every scenario, the complete volatility smile can be recovered by
calibrating a SABR model to the three implied volatilities.

When the SABR model is calibrated in a scenario, it does not matter which values
we use for β and s. This can be seen in Figure 4.3, where we calibrated the shifted
SABR model to three implied volatilities using different combinations of β and s.
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(a) Volatility smiles for maturity T = 1.
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Figure 4.3: Calibration of the SABR model with different values β and s, using three
normal implied volatilities σN, at M−, Matm, and M+, indicated by the black circles.
The forward rate is F0 = 2%.

4.2.2.2 Level, Slope, and Curvature Method

We can also adapt the method from Section 4.2.1.2 to use the normal implied
volatility from Theorem 2.27. We would then model the level, slope, and curvature
of the normal implied volatility smile. To proceed, we first make an approximation
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to Theorem 2.27 similar to what we have done in the previous section.

σN(F0,K, T ;α, ρ, ν, β, s) = ν(F0 −K)

log
(√1−2ρz+z2+z−ρ

1−ρ
) , (4.6)

where

z =


ν

α

(F0 + s)1−β − (K + s)1−β

1− β if β < 1,
ν

α
log((F0 + s)/(K + s)) if β = 1.

Then, from equation (4.6) we can easily obtain the level lN, slope sN, and curvature
cN of the at-the-money normal implied volatility. Note that we differentiate with
respect to the simple moneyness from Definition 2.24 instead of the shifted log-
moneyness from the previous section. The level lN, slope sN, and curvature cN are
then given by

lN = lim
K→F0

σN = α (F0 + s)β, (4.7)

sN = lim
K→F0

∂σN
s2

∂M
= 1

2

(
lN

β

F0 + s
+ νρ

)
,

cN = lim
K→F0

∂2σN
s2

∂M2 = 1
6

(
lN

β (β − 2)
(F0 + s)2 + 2− 3ρ2

lN
ν2
)
,

where M = M(F0,K) = K − F0 is the simple moneyness.

We are also able to analytically invert this system to find values α, ρ, and ν that
correspond to a certain level lN, slope sN, and curvature cN. This gives

α = lN
(F0 + s)β , (4.8)

ν =

√(
lNβ − 3(F0 + s)sN

)2 + l2
Nβ + 3(F0 + s)2 (lNcN − s2

N
)

F0 + s
,

ρ = 2 sN − lNβ/(F0 + s)
ν

.

As in the previous section, it can happen that if we use (4.8) we get ν2 < 0. In
those cases, we set ρ = sgn (2 sN − lNβ/(F0 + s)) and recompute the value of ν with
ν = (2 sN − lNβ/(F0 + s)) /ρ.

From a historical simulation perspective, we could also use lN, sN, and cN from
equation (4.7) as risk factors. Note that since lN is actually the at-the-money implied
volatility it has to be positive so we apply relative shocks as we did to lB in the
previous section.
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Note that, as in the previous section, the level lN, slope sN, and curvature cN will
have approximately the same value, regardless of the β and s that are used in the
calibration of the SABR model. So, the lN, sN, and cN are independent of the chosen
β and s. To show this, we use the method in this section to obtain SABR parameters
with different values of β and s. In Figure 4.4, we show the resulting volatility smiles,
where the parameters from set 2, 3, and 4 are obtained by recalibrating them from
the parameters of set 1 in Table 4.2. As expected, the results are more accurate for
smaller maturity, since the approximation from equation (4.6) is better when the
maturity is small. Moreover, the parameters from Table 4.2 are exactly the same as
the parameters in Table 4.1 from the previous section. So, although lN, sN, and cN
are different from lB, sB, and cB, we conclude that both methods are equally good
in recovering the SABR model parameters.

Table 4.2: Analytic recalibration of the normal implied volatility smile.
set β s α ρ ν

1 0.5 0.0% 0.0200 −0.1000 0.6000
2 0.8 0.0% 0.0647 −0.1678 0.6103
3 0.5 1.0% 0.0163 −0.0614 0.5937
4 0.8 1.0% 0.0468 −0.1082 0.5980

Effect of using different β and s when recovering SABR parameters α, ρ, and ν from the
level lN, slope sN, and curvature cN. The parameters from set 2, 3, and 4 are obtained by
recalibrating them from the parameters of set 1 with a forward rate F0 = 2%, using the
method described in this section.
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(a) Volatility smiles for maturity T = 1.
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(b) Volatility smiles for maturity T = 20.
Figure 4.4: Effect of using different β and s when recovering SABR parameters
α, ρ, and ν from the level lN, slope sN, and curvature cN. The resulting normal
implied volatilities σN are shown for different maturities using the parameters are in
Table 4.2.
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4.2.3 Using the SABR Model

Instead of using an implied volatility as in the previous sections, we can also use the
parameters of the SABR model as risk factors directly. However, when using the
SABR parameters as risk factors in a historical simulation, we need to be careful
as not all parameters have a direct effect on the volatility smile and some of the
parameters have an interaction with each other.

As explained in Section 2.4.3, the parameters β ∈ [0, 1] and s ≥ 0 are partially
redundant. Because of this redundancy, these parameters are typically fixed before
calibration and often the same values are used multiple months in a row. As these
parameters rarely change they are not suitable to use in a historical simulation.
Therefore, we will only consider the parameters α, ρ, and ν as risk factors.

Although the volatility smiles that can be obtained using different β and s are
practically the same, the values for α, ρ and ν change when using different β or s.
Hence, parameters that are obtained using a certain β,s-pair are not comparable
with the parameters obtained using different β and s. So, to preform a historical
simulation using the SABR parameters α, ρ, and ν we need to first recalibrate
these parameters to the same β and s. To this end, we could use the analytical
recalibration method we developed in Sections 4.2.2.2 or 4.2.1.2. Which choice of β
and s that gives the most accurate results will be determined in Section 5.3.2 of the
next chapter.

Assuming that all SABR parameters are obtained (or recalibrated) with the same β
and s, it remains questionable if we can use SABR parameters as risk factors directly,
because there is still some interaction between the parameters. For example, as ν
tends to zero, the value of ρ becomes less important to the shape of the resulting
volatility smile. Therefore, a historical shock to ρ obtained when the value of ν was
large might not be representative if today’s value of ν is small. Although the original
SABR parameters have a well defined mathematical meaning, Moni notes that it is
ρν that affects the slope of the volatility smile [47, 41]. Moreover, the smile curvature
is linked to the way the volatility moves independently from the underlying. This
gives the following reparameterization of the SABR model, that can be used as risk
factors in a historical simulation.

α, η = ρν, γ = ν
√

1− ρ2. (4.9)

To obtain the original SABR parameters from these, we can use

ν =
√
η2 + γ2, ρ = η/ν. (4.10)
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To use the SABR model, we need that α, ν > 0 and ρ ∈ (0, 1). Therefore, we require
that α, γ > 0 and η ∈ R. To ensure that α and γ remain positive after applying
historical shocks, we will use relative shocks for these two parameter and use absolute
shocks for the η parameter.

Instead of modeling changes in both the level and shape of the volatility smile, we
can alternatively model only the changes in the level of the volatility smile. This
can be done by considering only α as a risk factor. That is, we apply shocks to
the α parameter and instead of applying shocks to η and γ we use their current
values. When only using the α parameter as risk factor, the volatility smile can move
vertically up and down, but since η and γ, or equivalently ρ and ν, remain fixed the
shape of the volatility smile will also remain the same. Since most of the variation
is typically accounted for by vertical movements of the volatility smile, using only
the α parameter could be a reasonable approximation.

4.3 Summary

In this chapter, we have seen different methods that can be used to do a historical
simulation for interest rate options. Each of these methods consists of a combination
of risk factors for interest rates and implied volatilities. For interest rates, using the
forward interest rate as risk factors can lead to inconsistent market scenarios. So, in
order to generate realistic scenarios, it is necessary to use the spot interest rates at
several different tenors.

Determining the risk factors to use for the implied volatilities is more complex. In
this chapter, we obtained the risk factors based on parameterizations from three
different models. With each of these methods, we can model changes in level and
shape of the volatility smile, or we can model only the changes in level which can
be slightly less accurate but also simpler since we have less risk factors. This leads
to six different methods of generating implied volatility scenarios presented below.

• Methods from Section 4.2.1.2 based on Black’s model.
� Smile method: using the risk factors log(lB), sB, and cB, we model changes
in the level, slope and curvature of the volatility smile.

� Level method: using the risk factor log(lB), we model changes in the level of
the volatility smile only.

• Methods from Section 4.2.2.2 based on Bachelier’s model.
� Smile method: using the risk factors log(lN), sN, and cN, we model changes
in the level, slope and curvature of the volatility smile.

� Level method: using the risk factor log(lN), we model changes in the level of
the volatility smile only.
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• Methods from Section 4.2.3 based on the SABR model.
� Smile method: using the risk factors log(α), η, and log(γ), we model changes
in the level, slope and curvature of the volatility smile.

� Level method: using the risk factor log(α), we model changes in the level of
the volatility smile only.

By combining the risk factors for interest rates, i.e. the spot interest rates, with
the risk factors for implied volatility, we obtain six different historical simulation
methods. However, the methods based on Black’s model and the methods based on
the SABR model have free parameters. For the method based on Black’s model, the
shift sb needs to be chosen. For the methods based on the SABR model, we need
to select which β and s we use to recalibrate each observation, before applying the
historical shocks.
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Chapter 5

Empirical Study and Results

In this chapter, we test the historical simulation methods from the previous chapter
on market data to assess which method gives the most accurate forecast of the value
at risk and expected shortfall. By testing on market data, we can determine which
method gives the most accurate results in practice. We start this chapter with a
description of the market data that we used. Then, we describe the portfolio used
in each of the backtests. Lastly, we will present the results obtained in each of the
backtests.

5.1 Market Data

The data used in this thesis consists of all the data necessary to price swaptions of
different maturities and tenors. As such, the data consists of daily observations of
both the interest rates and the implied volatilities. In total, our dataset contains
1300 daily observations starting from 20-05-2010 and ending at 19-06-2015. All data
were provided by Rabobank, based on several different data sources.

The interest rate data is provided as Euribor spot swap rates with different maturities
up to 40 years. As explained in Section 4.1, these spot rates can be used directly in
a historical simulation. However, in order to price a swaption, we need the forward
rate and an annuity factor. These can be obtained by the bootstrapping method
from Section 2.5.

The implied volatilities are provided as SABR model parameters. That is, for
each combination of maturity and tenor, we have daily observations of the SABR
parameters α, ρ, ν, β, and s. These parameters are typically obtained by calibrating
the SABR model to available market implied volatilities. Since we are provided
with these parameters directly, we can skip the calibration process required by our
historical simulation methods and use the SABR model parameters directly. How
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the parameters are used depends on the method we employ to generate the historical
scenarios described in Section 4.2.

A particularly interesting feature of our dataset can be seen in Figure 5.1. The 1×1
forward swap rate becomes negative in the last part of the data. This is interesting
because it allows us to see how well the methods from Chapter 4 actually perform
in a market with negative interest rates. Moreover, it highlights the need for the
models we developed, as the conventional methods used in practice are unable to
cope with negative interest rates and would thus be unable to estimate the value at
risk or expected shortfall.
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Figure 5.1: Forward swap rates for different combinations of maturity × tenor.

5.2 Test Portfolio

In order to test the performance of each historical simulation method, we need a test
portfolio. In this thesis, we will only use payer swaptions, but the same test could be
applied to other types of options as well. A test portfolio needs to be large enough,
so that the correlations between the different products will have an effect on the
resulting value at risk or expected shortfall. We also want to have swaptions across
a range of different strikes to better capture the effect of changes in the implied
volatility smile. On the other hand, our backtest requires us to compute the value
at risk or expected shortfall 1000 times using each method. Therefore, we need the
test portfolio to be small enough such that the value at risk or expected shortfall
can be computed quickly.

In this thesis, we will use a portfolio consisting of payer swaptions across 16 different
combinations of maturities and tenors. For each maturity-tenor pair, the portfolio
contains 3 swaptions, each with a different strike. So in total, our test portfolio
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contains 48 swaptions with different combinations of maturities, tenors and strikes.
For the maturities and tenors, we use every combination of 1, 5, 10, and 20 years.
The strikes of the swaptions depend on the prevailing forward swap rate and the
maturity of the swaption. For each maturity and tenor, the test portfolio contains
one in-the-money, one at-the-money, and one out-of-the-money swaption with the
following strikes

F0 − 0.001
√
T , F0, F0 + 0.001

√
T ,

where F0 denotes the forward rate at the day the portfolio is constructed and T the
maturity of the swaption.

Example 5.1. The 1×1 forward swap rate on 19-06-15 is approximately 0.12%.
Therefore, the swaptions with maturity and tenor equal to 1 in our test portfolio
will have the strikes: 0.02%, 0.12%, and 0.22%, corresponding to an in-the-money,
an at-the-money, and an out-of-the-money swaption respectively. 4

Instead of buying each of the swaptions as described above, we can also sell them,
resulting in a second portfolio which has opposite value compared to the original
portfolio. By looking at both portfolios simultaneously, we effectively test both sides
of the profit and loss distribution. Therefore, we will use both these portfolios in
the subsequent backtests. The portfolio obtained by buying each swaption will be
referred to as the long portfolio and the portfolio where each swaption is sold will
be called the short portfolio.

Remark 5.2. The choice of test portfolio does have an influence on the results
presented in the next section. However, we repeated all the backtests using several
other test portfolios. Although the resulting p-values of these backtests are different,
the overall conclusions remain largely the same. Therefore, we only present the
results using the portfolio as described above. 4

5.3 Backtests

In this section, we will present the results of our backtests. We started by comparing
the methods based on Black’s model by doing multiple backtests with various values
for the Black model shift sb. Then, we continued with a similar comparison for the
SABR model based methods, where we also perform backtests for several different
combinations of β and s. Lastly, we tested each method from Chapter 4 to find
out which one of them gives to most accurate estimation of the value at risk and
expected shortfall.

Following the standards set by the Basel Committee on Banking Supervision, all
backtests in this section were be based on the estimates of the VaR(1%) and the
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ES(2.5%). The calibration window is set to 250 trading days, which is approximately
one year [29, 48]. Although the Basel Committee on Banking Supervision requires
the use of a 10 day risk horizon, a report by McKinsey finds that most banks are
using a 1 day risk horizon to estimate the value at risk or expected shortfall and then
scale the result to obtain an estimate for the 10 day risk horizon [42]. Therefore, we
also used a 1 day risk horizon for our historical simulation. By moving the calibration
window, this allowed us to generate 1000 estimates for the value at risk and expected
shortfall. Then, for each of these 1000 samples, we also computed the realized profit
or loss by using the data of the next day. In this way, we were able to compare each
value at risk or expected shortfall estimate to the realized losses. These data can
then be used to compute the backtest statistics as described in Section 3.3.

5.3.1 Effect of sb in Black’s Model Based Methods

In Section 4.2.1, we have described two historical simulation methods based on
Black’s model, one is based on shocking only the level of the volatility smile whereas
the other also shocks the slope and curvature of the volatility smile. These methods
still have one free parameter, namely the Black’s model shift sb. In this section,
we will investigate which shift value gives the most accurate historical simulation.
To this end, we perform backtests with both the level and the smile method using
different values of the shift parameter sb.

As can be seen in Table 5.1, all p values in the value at risk backtesting results are
larger than 50%. Based on these results we cannot reject the use of any shift sb
and it is not possible to distinguish between the Black’s model based methods that
use a different shift. The reason that most p-values are the same is due to the fact
that value at risk backtesting is based on the total number of times the value at
risk is exceeded. With a significance level of ` = 1% we expect around 10 breaches
in our samples of 1000 value at risk estimates. The backtest results from Table 5.1
have between 8 and 12 breaches. Since this backtest is symmetric, 8 or 12 breaches
correspond to a p-value of 52.50%, 9 or 11 breaches yield a p-value of 75.06%, and
10 breaches is precisely the expected value resulting in a p-value of 100%.

On the other hand, the expected shortfall backtesting results from Table 5.2 show
more variation. This is because the backtest of expected shortfall do not only consider
the number of breaches but also recognize the size of each breach. This results in
more possible outcomes and, hence, more variation of the p-values. Moreover, it can
be seen that the p-values decrease by increasing the shift. For a shift of 3% we can
even reject both the level and the smile methods at the 5% significance level, based
on the results of the short portfolio. This provides clear evidence that higher values
of the shift sb decreases the accuracy of both Black’s model based methods.
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Since these conclusions hold only in the backtests of the expected shortfall, we
conclude that methods which correctly estimate the value at risk do not necessarily
need to give accurate estimates of the expected shortfall. A possible reason for this
could be that estimating value at risk requires a correct forecast of the profit and loss
distribution up to the `th quantile, whereas estimating the expected shortfall requires
the complete tail of the profit and loss distribution to give accurate estimates.

This also indicates that, on average, the shifted Black implied volatility σB is more
accurate than the normal implied volatility σN of Bachelier’s model. To see this,
consider the approximation σN ≈ σB

sb(F0 + sb) [40]. When the shift sb increases
it starts to dominate the forward rate F0, and the term F0 + sb will be almost
equal to sb. So for a large shift sb, the shifted Black implied volatility σBsb and
the normal implied volatility σN are approximately equal up to the constant factor.
This phenomenon will be further investigated in Section 5.3.3, where we compare
the methods based on Black’s model with the methods based on Bachelier’s model.

Because the shift parameter sb needs to be at least 1% in order to price every product
in our test portfolios we will continue with the lowest shift possible and use the shift
sb = 1% in the subsequent sections.

Table 5.1: Value at risk backtest results.
Level Smile

sb Long Short Long Short
1.0% 75.06% 75.06% 75.06% 75.06%
2.0% 100.00% 52.50% 100.00% 75.06%
3.0% 100.00% 52.50% 100.00% 75.06%

The p-values from the unconditional coverage backtest from Section 3.3.1.1. The backtests
are performed using the level and smile methods from Section 4.2.1 on both the long and
the short portfolio with a significance level ` = 1%.

Table 5.2: Expected shortfall backtest results.
Level Smile

sb Long Short Long Short
1.0% 35.11% 10.27% 26.81% 11.56%
2.0% 32.18% 7.08% 24.37% 5.44%
3.0% 38.20% 4.14% 26.81% 4.75%

The p-values from the unconditional coverage backtest from Section 3.3.2.1. The backtests
are performed using the level and smile methods from Section 4.2.1 on both the long and
the short portfolio with a significance level ` = 2.5%.
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5.3.2 Effect of β and s in SABR Model Based Methods

As with the methods based on Black’s model, the methods based on the SABR
model also have free parameters. For the SABR based methods these are the β and
the shift s. To check which combination of these parameters gives to most accurate
value at risk and expected shortfall estimates we do a backtest with different values
for these parameters.

As can be seen in Table 5.3, the value at risk backtesting results are inconclusive
and we are not able to reject usage of any β and s combination. Nevertheless, these
results show weak evidence that a shift of s = 1.0% yields the most accurate method,
as we see most of the p-values decreasing when the shift increases.

The expected shortfall backtesting results from Table 5.4 do not provide more distinc-
tion either. To gain more insight in the ‘optimal’ choice of β and s a more extensive
study is required. For the remainder of this thesis we will use β = 0.2 and s = 1% to
compare the SABR model based methods to the methods based on different models.
We choose these values because they provide accurate estimates of both the value
at risk and the expected shortfall, however, other choices would have been valid as
well.

Table 5.3: Value at risk backtest results.
Level Smile

β s Long Short Long Short
0.2 1.0% 20.36% 75.06% 100.00% 11.20%
0.2 2.0% 11.20% 34.04% 100.00% 5.65%
0.2 3.0% 11.20% 34.04% 100.00% 5.65%
0.5 1.0% 34.04% 75.06% 100.00% 34.04%
0.5 2.0% 34.04% 75.06% 100.00% 5.65%
0.5 3.0% 20.36% 100.00% 100.00% 5.65%
0.8 1.0% 100.00% 20.36% 100.00% 52.50%
0.8 2.0% 100.00% 75.06% 75.06% 11.20%
0.8 3.0% 34.04% 75.06% 100.00% 5.65%

The p-values from the unconditional coverage backtest from Section 3.3.1.1. The backtests
are performed using the level and smile methods from Section 4.2.1 on both the long and
the short portfolio with a significance level ` = 1%.
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Table 5.4: Expected shortfall backtest results.
Level Smile

β s Long Short Long Short
0.2 1.0% 38.20% 56.00% 24.37% 52.14%
0.2 2.0% 35.11% 68.33% 22.10% 14.51%
0.2 3.0% 32.18% 90.72% 12.97% 12.97%
0.5 1.0% 64.10% 19.98% 16.19% 90.72%
0.5 2.0% 90.72% 29.41% 12.97% 16.19%
0.5 3.0% 64.10% 38.20% 10.27% 24.37%
0.8 1.0% 2.30% 1.22% 12.97% 24.37%
0.8 2.0% 18.01% 8.04% 3.59% 44.86%
0.8 3.0% 41.45% 19.98% 9.10% 18.01%

The p-values from the unconditional coverage backtest from Section 3.3.2.1. The backtests
are performed using the level and smile methods from Section 4.2.1 on both the long and
the short portfolio with a significance level ` = 2.5%.

5.3.3 Accuracy of Each Method

In this section, we show the backtest results of each historical simulation method of
Chapter 4. For the methods based on Black’s model we use the shift sb = 1%, and
the methods based on the SABR model use the shift s = 1% and we set β = 0.2.
In Tables 5.5 and 5.6, we show the result from both the unconditional coverage test
and the independence test described in Section 3.3.

As in the previous sections, we cannot reject any of the methods based on the results
from the unconditional coverage backtest for the value at risk. On the other hand,
the results of the independence backtest provide clear evidence to reject the SABR
smile model. The reason behind the low p-value in the independence backtest of the
SABR smile method will be explained later this section.

Similar to the results of the first backtesting section, the backtests for the expected
shortfall are more conclusive. As can be seen, both methods based on Bachelier’s
model have p-values below 5% in the unconditional coverage backtest and can thus
be rejected. This confirms the findings from Section 5.3.1, that already suggested
that the Black’s implied volatility σB better captures the market dynamics than the
normal implied volatility σN from Bachelier’s model. Note that this conclusion can
only be drawn from the results of the expected shortfall backtest and not from the
backtests of the value at risk. Showing again that a model that is deemed correct
for estimating the value at risk, can be rejected when estimating expected shortfall.
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Table 5.5: Value at risk backtest results.
Coverage Independence

Method Long Short Long Short
Black level 75.06% 75.06% 99.04% 98.96%
Black smile 75.06% 75.06% 99.89% 98.96%
Bachelier level 34.04% 34.04% 100.00% 96.17%
Bachelier smile 75.06% 34.04% 98.96% 96.17%
SABR level 20.36% 75.06% 100.00% 22.39%
SABR smile 100.00% 11.20% 99.60% 0.05%

The p-values from the unconditional coverage (left column) and independence (right column)
backtests from Sections 3.3.2.1 and 3.3.2.2. The backtests are performed on both the long
and the short portfolio with a significance level ` = 1%.

Table 5.6: Expected shortfall backtest results.
Coverage Independence

Method Long Short Long Short
Black level 35.11% 10.27% 98.61% 88.84%
Black smile 26.81% 11.56% 97.96% 89.44%
Bachelier level 16.19% 3.10% 99.89% 99.52%
Bachelier smile 3.10% 1.44% 98.47% 99.24%
SABR level 38.20% 56.00% 99.40% 89.95%
SABR smile 24.37% 52.14% 99.90% 69.03%

The p-values from the unconditional coverage (left column) and independence (right column)
backtests from Sections 3.3.1.1 and 3.3.1.2. The backtests are performed on both the long
and the short portfolio with a significance level ` = 2.5%.

We will also present how the value at risk and expected shortfall estimates line up
with the realized profit and loss over time. These results can give additional insights
on the accuracy of the different methods and can be found in Figure 5.2.

As can be seen, both the value at risk and expected shortfall estimates from the
SABR smile method become unreasonably high at the end of the backtesting period.
We observe that these high estimates coincide with a period where the ρ parameter
is close to 1 in our market data. In turn, the risk factor γ = ν

√
1− ρ2 becomes

very small. Since we are using relative shocks for γ, the shocks become very large
when γ is small. As a result, some of the scenarios are generated by unreasonable
shocks, which causes large losses in the short portfolio that, in turn, produce the high
value at risk and expected shortfall estimates. For the value at risk, this resulted
in a rejection of the method based on the independence backtest. For the expected
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shortfall we would thus expect that the SABR smile method is similarly rejected in
the independence backtest. However, this is not the case. One possible reason is
that the independence backtest has relatively low power, but more importantly this
is a sign that one should not blindly trust the backtesting results and should also
analyze the actual estimates of each method.

Realized Black level Bachelier level SABR level
Black smile Bachelier smile SABR smile
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(a) Time series of the realized profit and loss compared to the value at risk.
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(b) Time series of the realized profit and loss compared to the expected shortfall.
Figure 5.2: Time series of the realized profit and loss compared to the value at risk
(a) and expected shortfall (b) estimates. The estimates below the realized profit
and loss are from the long portfolio whereas the estimates above belong to the short
portfolio.
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Apart from the problem with the SABR smile method discussed above, we note that
all methods produce very similar estimates of both the value at risk and expected
shortfall. However, in large portfolios these small differences can become substantial
and have a material effect on the capital requirements that are based on these
estimates.

Overall, we have found reasons to reject three out of six methods, namely the SABR
smile method and both methods based on Bachelier’s model. Although we cannot
reject the other three methods, this does not necessarily mean that they are correct.
However, based on the results of several other backtests using different portfolios,
we find some evidence that suggests that the Black smile method is the most robust
and gives the most accurate estimates in general. Nevertheless, the methods that
only consider changes in the level of the volatility smile give accurate results and it
is questionable if incorporating changes in the shape of the volatility smile is worth
the extra complexity and effort.
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Chapter 6

Conclusion

In this thesis, we investigated the accuracy of historical simulation used to estimate
the value at risk and expected shortfall. We focused our research on portfolios
consisting of interest rate options. Because some interest rates have recently become
negative, this required the development of risk factors that can take this into account.
As a second objective, we tested how much the accuracy could be increased by
modeling the changes in the shape of the volatility smile as well.

The main contribution of this thesis stems from Theorem 2.28. By adapting the
existing SABR formula, we derived a new equation that allows for a change of the
shift parameter when computing implied volatilities. This in turn, allows us the
compare historical observations of implied volatilities obtained with different shift
parameters. This is necessary when we want to use the implied volatility as a risk
factors for historical simulation in markets with negative interest rates. Because
our solution is based on a closed-form expression, we do not need any numerical
methods, resulting in faster and more efficient methods for estimating the value at
risk and expected shortfall. Furthermore, by decomposing the SABR formula in a
level, slope and curvature component we extended our method such that it can also
model changes in the shape of the volatility smile.

Since the Basel Committee on Banking Supervision will require the adoption of
the expected shortfall risk measure in the near future, the results of this thesis can
provide useful insights. We confirm that historical simulation can be used for the
estimation of both the value at risk and expected shortfall, indicating that there
is no need for banks to change their methodologies. However, we do find that
the accuracy of expected shortfall estimates is more sensitive to the choice of risk
factors than the corresponding estimates for the value at risk. Hence, depending on
the implementation of the historical simulation method, the adoption of expected
shortfall could have an unexpected impact on the regulatory capital.
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However, we could not find strong evidence to support that modeling changes in the
shape of the volatility smile by additional risk factors can increase the estimation
accuracy. This is in line with the findings of Juutilainen (2013) [45], who concludes
that including changes of moneyness dependent volatility does not improve the value
at risk estimation accuracy. Therefore, it is questionable if incorporating changes in
the shape of the volatility smile is worth the extra complexity and modeling effort.

A natural extension of this study would be to use the risk factors derived in this
thesis in other historical simulation variants to see if this improves the estimation
accuracy. Possibilities include, for example the time-weighted historical simulation
by Boudoukh et al. [18], and the filtered historical simulation by Barone-Adesi et
al. [17, 21]. Additionally, more extensive backtesting, using a larger backtesting
period with more diverse and exotic test portfolios could provide an answer to which
risk factors produce the most accurate estimates of the value at risk and expected
shortfall.

The main focus of this research has been to investigate which risk factors are ap-
plicable to model the volatility smile. An interesting extension of this would be to
also focus on different methods to apply historical shocks to the interest rates. To
this end, it would be interesting to see if more accurate forecasts are possible when
using relative shocks to the shifted interest rates as explained by Fries et al. [43].
This could also lead to a method of estimating the shift parameter in the Black’s
model based methods of this thesis and lead to an overall more consistent historical
simulation framework.
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